Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:58:01.460Z Has data issue: false hasContentIssue false

CALCIUM OXALATE RADIOCARBON DATING: PRELIMINARY TESTS TO DATE ROCK ART OF THE DECORATED OPEN-AIR CAVES, ERONGO MOUNTAINS, NAMIBIA

Published online by Cambridge University Press:  14 September 2020

Jean-Pascal Dumoulin*
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
Matthieu Lebon
Affiliation:
Histoire Naturelle de l’Homme Préhistorique (HNHP), UMR 7194, Muséum, National d’Histoire Naturelle, CNRS, Université Perpignan Via Domitia, Alliance Sorbonne Université, Musée de l’Homme, 17 Place du Trocadéro, 75116 Paris, France
Ingrid Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
Guilhem Mauran
Affiliation:
Histoire Naturelle de l’Homme Préhistorique (HNHP), UMR 7194, Muséum, National d’Histoire Naturelle, CNRS, Université Perpignan Via Domitia, Alliance Sorbonne Université, Musée de l’Homme, 17 Place du Trocadéro, 75116 Paris, France
Alma Nankela
Affiliation:
Archaeology Unit, National, Heritage Council of Namibia, 153 Dr. AB May & Rev. Michael Scott Streets, Ausspannplatz, Windhoek, Namibia
David Pleurdeau
Affiliation:
Histoire Naturelle de l’Homme Préhistorique (HNHP), UMR 7194, Muséum, National d’Histoire Naturelle, CNRS, Université Perpignan Via Domitia, Alliance Sorbonne Université, Musée de l’Homme, 17 Place du Trocadéro, 75116 Paris, France
Emmanuelle Delqué-Količ
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
Christophe Moreau
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
Marion Perron
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
Marc Sieudat
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
Bruno Thellier
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
Lucile Beck
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
*
*Corresponding author. Email: [email protected].

Abstract

The direct dating of rock paintings is not always possible due to the lack of organic carbon compounds in pigments, or because sampling from a heritage site is often restricted. To overcome these limitations, dating laboratories have to develop new approaches. In this study, we consider sampling calcium oxalate crusts covering the painted artworks as a way to indirectly date the rock art. This stratigraphic approach includes isolating and extracting pure oxalate from the crusts. The approach was tested on natural bulk accretions collected in the open-air sites of Erongo Mountains in Namibia. The accretions were separated into two phases (pure oxalate and the remaining residues) with a special pretreatment. This process removes carbonates through acidification (HCl 6N) and dissolves the oxalate into the supernatant, leaving the minerals and windblown organic compounds in the residue. The efficiency of the separation was checked on the two phases by FTIR analyses and by 14C dating and showed that pure oxalate powders were indeed obtained. AMS radiocarbon results of various accretions on the same art panels provided ages from modern periods to 2410 ± 35 BP. From these first results, more targeted sampling campaigns can be considered to provide a terminus ante quem for the rock art.

Type
Conference Paper
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 9th Radiocarbon & Archaeology Symposium, Athens, GA, USA, 20–24 May 2019

References

REFERENCES

Aubert, M. 2012. A review of rock art dating in the Kimberley, Western Australia. Journal of Archaeological Science 39:573577.CrossRefGoogle Scholar
Bednarik, R. 2002. The dating of rock art: a critique. Journal of Archaeological Science 29:12131233. doi: 10.1006/jasc.2001.0711.CrossRefGoogle Scholar
Beazley, M, Rickman, R, Ingram, D, Boutton, T, Russ, J. 2002. Natural abundances of carbon isotopes (14C, 13C) in lichens and calcium oxalate pruina: implications for archaeological and paleoenvironmental studies. Radiocarbon 44(3):675683. doi: 10.1017/S0033822200032124.Google Scholar
Beck, L, Genty, D, Lahlil, S, Lebon, M, Tereygeol, F, Vignaud, C, Reiche, I, Lambert, E, Valladas, H, Kaltnecker, E, Plassard, F, Menu, M, Paillet, P. 2013. Non-destructive portable analytical techniques for carbon in situ screening before sampling for dating prehistoric rock paintings. Radiocarbon 55(2):436444. doi: 10.1017/S003382220005757X.CrossRefGoogle Scholar
Bonneau, AF, Brock, TFG, Pearce, HDG, Pollard, AM. 2011. An improved pretreatment protocol for radiocarbon dating black pigments in San rock art. Radiocarbon 53:419428.CrossRefGoogle Scholar
Chen, J, Blume, H-P. 2000. Weathering of rocks induced by lichen colonization—a review. CATENA 39(2):121146. doi: 10.1016/S0341-8162(99)00085-5.CrossRefGoogle Scholar
Cole, N, Watchman, A. 2005. AMS dating of rock art in the Laura Region, Cape York Peninsula, Australia: protocols and results of recent research. Antiquity 79:661678.CrossRefGoogle Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59: 713-726.CrossRefGoogle Scholar
Hedges, R, Ramsey, C, Van Klinken, G, Pettitt, P, Nielsen-Marsh, C, Etchegoyen, A, Niello, JO, Boschín, M, Llamazares, A. 1998. Methodological issues in the 14C dating of rock paintings. Radiocarbon 40:3544. doi: 10.1017/S0033822200017859.CrossRefGoogle Scholar
Heine, K. 2004. Flood reconstructions in the Namib desert, Namibia and Little Ice Age climatic implications: evidence from slackwater deposits and desert soil sequences. Journal Geological Society of India 64:535547.Google Scholar
Hess, D, Coker, DJ, Loutsch, JM, Russ, J. 2008. Production of oxalates in vitro by microbes isolated from rock surfaces with prehistoric paints in the lower Pecos region, Texas. Geoarchaeology International Journal 23(1):311.Google Scholar
Jones, T, Levchenko, V, King, P, Troitzsch, U, Wesley, D, Williams, A, Nayingull, A. 2017. RADIOCARBON age constraints for a Pleistocene–Holocene transition rock art style: The Northern Running Figures of the East Alligator River region, western Arnhem Land, Australia. Journal of Archaeological Science Reports 11:8089. doi: 10.1016/j.jasrep.2016.11.016.CrossRefGoogle Scholar
Kinahan, J. 1990. Four thousand years at the Spitzkoppe: changes in settlement patterns and land use on the edge of the Namib. Cimbebasia 12:114.Google Scholar
Lafuente, B, Downs, RT, Yang, H, Stone, N. 2015. The power of databases: the RRUFF project. In: Armbruster, T, Danisi, RM, editors. Highlights in mineralogical crystallography. Berlin: De Gruyter. p. 130.Google Scholar
Lenssen-Erz, T. 2007. Rock art in African Highlands, Brandberg/Daureb, Namibia - Painters of a Prehistoric Hunter gatherer world. In: Bubenzer, O, Bolten, A, Darius, F, editors. Atlas of environmental change and human adaptation in arid Africa. Cologne: Africa Praehistorica 21st Heinrich Barth Institute. p. 7273 Google Scholar
Loy, TH, Jones, R, Nelson, DE, Meehan, B, Vogel, J, Southon, J, Cosgrove, R. 1990. Accelerator radiocarbon dating of human blood proteins in pigments from Late Pleistocene art sites in Australia. Antiquity 64(242) :110116.CrossRefGoogle Scholar
Mauran, G, Lebon, M, Détroit, F, Caron, B, Nankela, A, Pleurdeau, D, Bahain, JJ. 2019. First in situ pXRF analyses of rock paintings in Erongo, Namibia: results, current limits and prospects. Archaeological and Anthropological Sciences 11(8):41234145. doi: 10.1007/s12520-019-00787-7.CrossRefGoogle Scholar
Moreau, C, Caffy, I, Comby, C, Delqué-Količ, E, Dumoulin, J-P, Hain, S, Quiles, A, Setti, V, Souprayen, C, Thellier, B. 2013. Research and development of the Artemis 14C AMS facility: status report. Radiocarbon 55(2–3):331337.CrossRefGoogle Scholar
Morwood, MJ, Walsh, GL, Watchman, AL. 2010. AMS radiocarbon ages for beeswax and charcoal pigments in north Kimberley rock art. Rock art research: The Journal of the Australian Rock Art Research Association (AURA) 27(1):3.Google Scholar
Pager, H. 1989. The rock paintings of the upper Brandberg, part I – Amis Gorge. Africa Praehistorica 1. Köln.Google Scholar
Pleurdeau, D, Imalwa, E, Détroit, F, Lesur, J, Veldman, A, Bahain, J-J, Marais, E. 2012. Of sheep and men: earliest direct evidence of caprine domestication in southern Africa at Leopard Cave (Erongo, Namibia. PLoS ONE 7(7):e40340.CrossRefGoogle ScholarPubMed
Prinsloo, LC. 2007. Rock hyraces: a cause of San rock art deterioration? JRS 38(5):496503. doi: 10.1002/jrs.1671.Google Scholar
Richter, J, Vogelsang, R. 2008. Rock art in north-western central Namibia—its age and cultural background. In: Limprecht, C, Biesele, M, editors. Heritage and cultures in modern Namibia—in-depth views of the country. Klaus Hess Publishers. p. 3746.Google Scholar
Rudner, I. 1982. Khoisan pigments and paints and their relationship to rock paintings. Annals of the South African Museum 87:1281.Google Scholar
Rudner, I. 1983. Paints of the Khoisan rock artists. Goodwin Series 4:14. doi: 10.2307/3858097.CrossRefGoogle Scholar
Ruiz, J, Hernanz, A, Armitage, RA, Rowe, MW, Viñas, R, Rubio, A. 2012. Calcium oxalate AMS 14C dating and chronology of post-Palaeolithic rock paintings in the Iberian Peninsula. Two dates from Abrigo de los Oculados (Henarejos, Cuenca, Spain). Journal of Archaeological Science 39(8):26552667.CrossRefGoogle Scholar
Rusakov, A, Vlasov, A, Zelenskaya, M, Frank-Kamenetskaya, O, Vlasov, D. 2016. The crystallization of calcium oxalate hydrates formed by interaction between microorganisms and minerals. Biogenic–abiogenic interactions in natural and anthropogenic systems. Springer International Publishing. p. 357–377. doi: 10.1007/978-3-319-24987-2_28.CrossRefGoogle Scholar
Russ, J, Hyman, M, Shafer, HJ, Rowe, MW. 1990. Radiocarbon dating of prehistoric rock paintings by selective oxidation of organic carbon. Nature 348:710711.CrossRefGoogle Scholar
Scherz, RE. 1970. Felsbilder in Südwest-Afrika, Teil I: Die Gravierungen in SSüdwest-Afrika ohne den Nordwesten des Landes. FundamentaA7. KöWWien.Google Scholar
Steelman, KL, Rickman, R, Rowe, MW, Boutton, TW, Russ, J, Guidon, N. 2002. AMS radiocarbon ages of an oxalate accretion and rock paintings at Toca do Serrote da Bastiana, Brazil. In: Jakes, K, editor. Archeological chemistry VI: materials, methods and meaning. Washington (DC): ACS Symposium Series. p. 2235.CrossRefGoogle Scholar
Valladas, H, Tisnerat, N, Cachier, H, Arnold, M, Bernaldo de Quiros, F, Cabrera Valdés, V, Clottes, J, Courtin, J, Fortea-Perez, JJ, Gonzalez-Sainz, C, Moure-Romanillo, A. 2001. Radiocarbon AMS dates for paleolithic cave paintings. Radiocarbon 43:977986.CrossRefGoogle Scholar
Valladas, H. 2003. Direct radiocarbon dating of prehistoric cave paintings by accelerator mass spectrometry. Measurement Science and Technology 14:14871492.CrossRefGoogle Scholar
Van der Merwe, NJ, Sealy, JC, Yates, R. 1987. First accelerator carbon-14 date for pigment from a rock painting. South African Journal of Science 83:5657.Google Scholar
Vogelsang, R, Richter, J, Jacobs, Z, Eichhorn, B, Linseele, V, Roberts, R. 2010. New excavations of Middle Stone Age deposits at Apollo 11 rockshelter, Namibia: stratigraphy, archaeology, chronology and past environments. Journal of African Archaeology 8. doi: 10.3213/1612-1651-10170.CrossRefGoogle Scholar
Watchman, A. 1993. Perspectives and potentials for absolute dating prehistoric rock paintings. Antiquity 67(254):5865. doi: 10.1017/S0003598X00045051.CrossRefGoogle Scholar
Watchman, A, O’Connor, S, Jones, R. 2005. Dating oxalate minerals 20–45ka. Journal of Archaeological Science 32:369e374.CrossRefGoogle Scholar
Weiner, S. 2010. Chapter 12. Microarchaeology. Beyond the visual archaeological record. Cambridge University Press.CrossRefGoogle Scholar
Wendt, WE. 1972. Preliminary report on an archeological research programme in South West Africa. Cimbebasia 2:161.Google Scholar