Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T22:57:55.096Z Has data issue: false hasContentIssue false

ASSESSING THE 14C MARINE RESERVOIR EFFECT IN ARCHAEOLOGICAL CONTEXTS: DATA FROM THE CABEÇUDA SHELL MOUND IN SOUTHERN BRAZIL

Published online by Cambridge University Press:  05 December 2022

Eduardo Q Alves*
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK Laboratório de Radiocarbono, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, RJ, Brazil
Kita D Macario
Affiliation:
Laboratório de Radiocarbono, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Rita Scheel-Ybert
Affiliation:
Laboratório de Arqueobotânica e Paisagem, Programa de Pós-Graduação em Arqueologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040, RJ, Brazil
Fabiana M Oliveira
Affiliation:
Laboratório de Radiocarbono, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
André Carlo Colonese
Affiliation:
Department of Prehistory and Institute of Environmental Science and Technology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
Paulo César Fonseca Giannini
Affiliation:
Instituto de Geociências, Universidade de São Paulo, R. do Lago, 562, Cidade Universitária, São Paulo 05508-080, Brazil
Renato Guimarães
Affiliation:
Laboratório de Difração de Raio-X, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Stewart Fallon
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
Marcelo Muniz
Affiliation:
Laboratório de Radioecologia e Alterações Ambientais, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, RJ, Brazil
David Chivall
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
Christopher Bronk Ramsey
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
*
*Corresponding author. Email: [email protected]

Abstract

Prehistoric shell mounds can be useful for the quantification of the radiocarbon marine reservoir effect (MRE) and, at the same time, knowledge about the MRE allows for the establishment of robust chronologies for these sites. This creates a loop in which the archaeological setting has a dual role: it is part of both the method and the application. Therefore, it is paramount to address these sites from both archaeological and environmental perspectives, investigating their origin and diagenesis in order to overcome biases caused by post-depositional alterations. In this study, samples of bone, charcoal and shell from a Late Holocene shell mound in Southern Brazil, the Sambaqui de Cabeçuda, were analyzed following a multidisciplinary approach to disentangle the complex relationships between archaeology and the environment. We performed X-ray diffraction, radiocarbon dating, stable isotopes (δ13C, δ18O, δ15N) and anthracology analyses as well as Bayesian Chronological Models and Isotope Mixing Models to assess the local MRE and to reconstruct the diet of Cabeçuda builders. Our results reveal a negative local correction for the MRE (ΔR = –263 ± 46 14C yr), expected for the lagoon next to the site, and diets with considerable intakes of marine proteins. We examine the implications of these results for the chronology of the site and discuss a series of complications when performing MRE studies using shell mound sites.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, R. 1974. American seashells; the marine molluska of the Atlantic and Pacific coasts of North America. New York: Van Nostrand Reinhold.Google Scholar
Aitken, M. 1900. Science-based dating in archaeology. London: Routledge.Google Scholar
Albero, MC, Angiolini, FE, Piana, E. 1986. Discordant ages related to reservoir effect of associated archaeologic remains from the tunel site, beagle channel, Argentine Republic. Radiocarbon 28(2):748753.CrossRefGoogle Scholar
Als-Nielsen, J, McMorrow, D. 2011. Elements of modern X-ray physics. Jon Wiley & Sons. 2nd edition.CrossRefGoogle Scholar
Alves, EQ, Macario, KD, Spotorno-Oliveira, P, Oliveira, FM, Muniz, MC, Fallon, S, et al. 2020. Nineteenth century expeditions and the radiocarbon marine reservoir effect on the Brazilian coast. Geochimica et Cosmochimica Acta.CrossRefGoogle Scholar
Alves, E, Macario, K, Ascough, P, Bronk Ramsey, C. 2018. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects. Reviews of Geophysics 56:128.CrossRefGoogle Scholar
Amaral, PGC, Fonseca Giannini, PC, Sylvestre, F, Ruiz Pessenda, LC. 2012. Paleoenvironmental reconstruction of a Late Quaternary lagoon system in southern Brazil (Jaguaruna region, Santa Catarina state) based on multi-proxy analysis. Journal of Quaternary Science 27(2):181191.CrossRefGoogle Scholar
Ambrose, SH. 1986. Stable carbon and nitrogen isotope analysis of human and animal diet in Africa. Journal of Human Evolution 15(8):707731.CrossRefGoogle Scholar
Anderson, A. 1991. The chronology of colonization in New Zealand. Antiquity 65(249):767795.CrossRefGoogle Scholar
Andrus, CFT, Thompson, VD. 2012. Determining the habitats of mollusk collection at the Sapelo Island shell ring complex, Georgia, USA using oxygen isotope sclerochronology. Journal of Archaeological Science 39(2):215228.CrossRefGoogle Scholar
Angulo, RJ, Giannini, PCF, Suguio, K, Pessenda, LCR. 1999. Relative sea-level changes in the last 5500 years in southern Brazil (Laguna – Imbituba region, Santa Catarina State) based on vermetid 14C ages. Marine Geology 159:323339.CrossRefGoogle Scholar
Angulo, RJ, Lessa, GC, de Souza, M. 2006. A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25:486506.CrossRefGoogle Scholar
Arneborg, J, Heinemeier, J, Lynnerup, N, Nielsen, H, Rud, N, Sveinbjornsdottir, A. 1999. Change of diet of the Greenland Vikings determined from stable carbon analysis and 14C dating of their bones. Radiocarbon 41(2):157168.CrossRefGoogle Scholar
Ascough, P, Cook, G, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography: Earth and Environment 29(4):532547.CrossRefGoogle Scholar
Barletta, M, Lima, ARA, Dantas, DV, Oliveira, IM, Neto, JR, Fernandes, CAF, Farias, EGG, Filho, JLR, Costa, MF. 2017. How can accurate landing stats help in designing better fisheries and environmental management for Western Atlantic estuaries? In: Finkl, CW, Makowski, C, editors. Coastal wetlands: alteration and remediation. Springer. p. 631703.CrossRefGoogle Scholar
Bayliss, A. 2009. Rolling out revolution: using radiocarbon dating in archaeology. Radiocarbon 51(1):123147.CrossRefGoogle Scholar
Beavan, NR, Sparks, RJ. 1998. Factors influencing 14C ages of the pacific rat Rattus exulans . Radiocarbon 40(2):601613.CrossRefGoogle Scholar
Beavan-Athfield, NR, McFadgen, BG, Sparks, RJ. 2001. Environmental influences on dietary carbon and 14C ages in modern rats and other species. Radiocarbon 43(1):714.CrossRefGoogle Scholar
Bernal, JP, Cruz, FW, Stríkis, NM, Wang, X, Deininger, M, Catunda, MCA, et al. 2016. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth and Planetary Science Letters 450:186196.CrossRefGoogle Scholar
Boehs, G, Magalhães ARM. 2004. Simbiontes associados com Anomalocardia brasiliana (Gmelin) (Mollusca, Bivalvia, Veneridae) na Ilha de Santa Catarina e região continental adjacente, Santa Catarina, Brasil.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Ramsey, CB. 2010). Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):10231045.CrossRefGoogle Scholar
Bronk Ramsey, C. 2013. Recent and planned developments of the Program OxCal. Radiocarbon 55(3–4):720730.CrossRefGoogle Scholar
Bronk Ramsey, C, Hedges, R. 1997. Hybrid ion sources: radiocarbon measurements from microgram to milligram. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123(1–4):539545.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.CrossRefGoogle Scholar
Bruhns, K. 1994. Ancient South America. Cambridge University Press.Google Scholar
Budowski, G. 1965. Distribution of tropical American rain forest species in the light of successional processes. Turrialba 15(1):4042 Google Scholar
Byrne, C, Dotte-Sarout, E, Winton, V. 2013. Charcoals as indicators of ancient tree and fuel strategies: an application of anthracology in the Australian Midwest. Australian Archaeology 77:94106.CrossRefGoogle Scholar
Casati, R. 2019. O registro climático e ambiental das conchas de sambaquis e depósitos paleolagunares na costa centro-sul Catarinense [doctoral dissertation]. Universidade de São Paulo.Google Scholar
Chappell, J, Polach, H. 1972. Some effects of partial recrystallisation on 14C dating Late Pleistocene corals and molluscs. Quaternary Research 252.Google Scholar
Chisholm, B, Nelson, DE, Schwarcz, HP. 1982. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216:1113111132.CrossRefGoogle ScholarPubMed
Colonese, AC, Collins, M, Lucquin, A, Eustace, M, Hancock, Y, Ponzoni, RDAR, Mora, A, Smith, C, DeBlasis, P, Figuti, L, et al. 2014. Long-term resilience of late Holocene coastal subsistence system in southeastern South America. PLoS ONE 9(4):113.CrossRefGoogle ScholarPubMed
Colonese, C, Netto, S, Francisco, A, Deblasis, P, Villagran, XS, Ponzoni, R, Hancock, Y, Hausmann, N, Farias, D, Prendergast, A, et al. 2017. Shell sclerochronology and stable isotopes of the bivalve Anomalocardia flexuosa (Linnaeus, 1767) from southern Brazil: Implications for environmental and archaeological studies. Palaeogeography, Palaeoclimatology, Palaeoecology 484:721.CrossRefGoogle Scholar
Commendador, A. 2014. Radiocarbon dating human skeletal material on Rapa Nui: Evaluating the effect of uncertainty in marine-derived carbon. Radiocarbon 56(1):277294.CrossRefGoogle Scholar
Cook, GT, Ascough, PL, Bonsall, C, Hamilton, WD, Russell, N, Sayle, KL, Scott, EM, Bownes, JM. 2015. Best practice methodology for 14C calibration of marine and mixed terrestrial/marine samples. Quaternary Geochronology 27:164171.CrossRefGoogle Scholar
Coplen, TB. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (Technical Report). Pure and Applied Chemistry 66(2):273276.CrossRefGoogle Scholar
Cruz, FW Jr, Burns, SJ, Jercinovic, M, Karmann, I, Sharp, WD, Vuille, M. 2007. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71(9):22502263.CrossRefGoogle Scholar
DeBlasis, P, Fish, SK, Gaspar, MD, Fish, PR. 1998. Some references for the discussion of complexity among the Sambaqui moundbuilders from the southern shores of Brazil. Revista de Arqueologia Americana (15):75–105.Google Scholar
DeBlasis, P, Kneip, A, Scheel-Ybert, R, Giannini, PC, Gaspar, MD. 2007. Sambaquis e Paisagem – Dinâmica natural e arqueologia regional no litoral do sul do Brasil. Arqueología Suramericana 3(1):2961.Google Scholar
Deforce, K, Boeren, I, Adriaenssens, S, Bastiaens, J, De Keersmaeker, L, Haneca, K, Tys, D, Vandekerkhove, K. 2013. Selective woodland exploitation for charcoal production. A detailed analysis of charcoal kiln remains (ca. 1300–1900 AD) from Zoersel (northern Belgium). Journal of Archaeological Science 40(1):681689.CrossRefGoogle Scholar
de Souza, R, Lima, T, da Silva, E. 2011. Conchas Marinhas de Sambaquis do Brasil. Technical Books.Google Scholar
Detienne, P, Jacquet, P. 1983. Atlas d’identification des bois de l’Amazonie et des regions voisines. Centre Technique Forestier Tropical, France.Google Scholar
Douka, K, Hedges, RM, Higham, TG. 2010. Improved AMS 14C dating of shell carbonates using high-precision X-Ray Diffraction and a Novel Density Separation Protocol (CarDS). Radiocarbon 52(2):735751.CrossRefGoogle Scholar
Emery-Barbier, A, Thiébault S. 2005. Preliminary conclusions on the Late Glacial vegetation in south-west Anatolia (Turkey): the complementary nature of palynological and anthracological approaches. Journal of Archaeological Science 32(8):12321251.CrossRefGoogle Scholar
Enmar, R, Stein, M, Bar-Matthews, M, Sass, E, Katz, A, Lazar, B. 2000. Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochimica et Cosmochimica Acta, 64(18):31233132.CrossRefGoogle Scholar
Erlandson, JONM, Kennett, DJ, Ingram, BL, Guthrie, DA, Morris, DONP, Tveskov, MAT, West, GJ, Walker, PL. 1996. An archaeological and paleontological chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. Radiocarbon 38(2):355373.CrossRefGoogle Scholar
Ervynck, A. 2014. Dating human remains from the historical period in Belgium: diet changes and the impact of marine and freshwater reservoir effects. Radiocarbon 56(2):779788.CrossRefGoogle Scholar
Eastoe, CJ, Fish, S, Fish, P, Gaspar, MD, Long, A. 2002. Reservoir corrections for marine samples from the south Atlantic coast, Santa Catarina State, Brazil. Radiocarbon 44(1):145148.CrossRefGoogle Scholar
Euba, I, Allué, E, Burjachs, F. 2016. Wood uses at El Mirador Cave (Atapuerca, Burgos) based on anthracology and dendrology. Quaternary International 414:285293.CrossRefGoogle Scholar
Facorellis, Y. 1998. Apparent 14C ages of marine mollusk shells from a Greek Island: Calculation of the marine reservoir effect in the Aegean Sea. Radiocarbon 40(2):963973.CrossRefGoogle Scholar
Fallon, SJ, Fifield, LK, Chappell, JM. 2010. The next chapter in radiocarbon dating at the Australian National University: status report on the single stage AMS. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 268(7–8):898901.CrossRefGoogle Scholar
Feigl, F. 1958. Spot tests in inorganic analysis. Amsterdam: Elsevier.Google Scholar
Fernandes, R. 2016. A Simple(r) model to predict the source of dietary carbon in individual consumers. Archaeometry 58(3):500512.CrossRefGoogle Scholar
Fernandes, R, Grootes, P, Nadeau, MJ, Nehlich, O. 2015. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): the case study of Ostorf (Germany). American Journal of Physical Anthropology 158(2):325340.CrossRefGoogle ScholarPubMed
Fernandes, R, Millard, AR, Brabec, M, Nadeau, MJ, Grootes, P. 2014. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE 9(2):19.CrossRefGoogle ScholarPubMed
Fernandes, R, Nadeau, MJ, Grootes, PM. 2012. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeological and Anthropological Sciences, 4(4):291301.CrossRefGoogle Scholar
Fonseca, G, Netto, SA. 2006. Shallow sublittoral Benthic communities of the Laguna estuarine system, South Brazil. Brazilian Journal of Oceanography 54(1):4154.CrossRefGoogle Scholar
Fornari, M, Giannini, PCF, Junior, DRN. 2012. Facies associations and controls on the evolution from a coastal bay to a lagoon system, Santa Catarina Coast, Brazil. Marine Geology 323: 5668.CrossRefGoogle Scholar
Fossile, T, Ferreira, J, da Rocha Bandeira, D, Figuti, L, Dias-da-Silva, S, Hausmann, N, Robson, HK, Orton, D, Colonese, AC. 2019. Pre-Columbian fisheries catch reconstruction for a subtropical estuary in South America. Fish and Fisheries 20(6):11241137.CrossRefGoogle Scholar
Friedman, G. 1959. Identification of carbonate minerals by staining methods. Journal of Sedimentary Petrology 29(1):8797.Google Scholar
Galetti, M, Rodarte, RR, Neves, CL, Moreira, M, Costa-Pereira, R. 2016. Trophic niche differentiation in rodents and marsupials revealed by stable isotopes. PLoS ONE 11(4):115.Google ScholarPubMed
Gaspar, M, DeBlasis, P, Fish, S, Fish, P. 2008. Sambaqui (shell mound) societies of coastal Brazil. In: Silverman, H, Isbell, W, editors. Handbook of South American archaeology. Springer. p. 319335.CrossRefGoogle Scholar
Gavin, DG. 2001. Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 43(1):2744.CrossRefGoogle Scholar
Giannini, PC. 2002. Complexo lagunar centro-sul catarinense-valioso patrimônio sedimentológico, arqueológico e histórico. Sítios geológicos e paleontológicos do Brasil 75:213222.Google Scholar
Giannini, PCF. 1993. Sistemas deposicionais no Quaternário Costeiro entre Jaguaruna e Imbituba, SC [doctoral thesis]. Universidade de São Paulo. doi: 10.11606/T.44.1993.tde-11032013-133424.CrossRefGoogle Scholar
Giannini, PC, Sawakuchi, AO, Martinho, CT, Tatumi, SH. 2007. Eolian depositional episodes controlled by Late Quaternary relative sea level changes on the Imbituba–Laguna coast (southern Brazil). Marine Geology 237(3–4):143168.CrossRefGoogle Scholar
Giannini, PCF, Villagran, XS, Fornari, M, Nascimento, DRD Jr, Menezes, PML, Tanaka, APB, et al. 2010. Interações entre evolução sedimentar e ocupação humana pré-histórica na costa centro-sul de Santa Catarina, Brasil. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas 5(1):105–128.Google Scholar
Gillespie, R. 1984. Radiocarbon user’s handbook. Oxford: Oxford University Committee for Archaeology. Oxbow Books. ISBN 0 947816 93 8.Google Scholar
Goh, K, Molloy, B. 1972. Reliability of radiocarbon dates from buried charcoals. In: Proceedings of the 8th International Conference on Radiocarbon Dating, Wellington. The Royal Society of New Zealand.Google Scholar
Gruber, N, Keeling, C, Bacastow, R, Guenther, P, Lueker, T, Wahlen, M, Meijer, H, Mook, W, Stocker, T. 1999. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochemical Cycles 13(2):307335.CrossRefGoogle Scholar
Guerra, AT. 1950. Contribuição ao estudo da geomorfologia e do quaternário do litoral de Laguna (Santa Catarina. Revista Brasileira de Geografia 12(4):535564.Google Scholar
Heaton, TJ, Köhler, P, Butzin, M, Bard, E, Reimer, RW, Austin, WE, Ramsey, CB, Grootes, PM, Hughen, KA, Kromer, B, Reimer, PJ. 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62(4):779820.CrossRefGoogle Scholar
Hedges, RE, Reynard, LM. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34:12401251.CrossRefGoogle Scholar
Hellevang, H, Aagaard, P. 2015. Constraints on natural global atmospheric CO2 fluxes from 1860 to 2010 using a simplified explicit forward model. Scientific Reports 5(June):112.CrossRefGoogle ScholarPubMed
Hogg, AG, Heaton, TJ, Hua, Q, Palmer, JG, Turney, CS, Southon, J, Bayliss, A, Blackwell, PG, Boswijk, G, Ramsey, CB, Pearson, C. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62(4):759–778.CrossRefGoogle Scholar
Jim, S, Jones, V, Ambrose, SH, Evershed, RP. 2006. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. British Journal of Nutrition 95(06):1055.CrossRefGoogle ScholarPubMed
Kjerfve, B. 1994. Coastal lagoons. In: Kjerfve, B, editor. Coastal Lagoon Processes. Elsevier.Google Scholar
Klokler, DM. 2008. Food for body and soul: mortuary ritual in shell mounds (Laguna-Brazil) [PhD thesis]. The University of Arizona.Google Scholar
Klokler, DM. 2012. Consumo ritual, consumo no ritual: festins funerários e sambaquis. Habitus 10(1):83104.Google Scholar
Klokler, DM. 2014. Adornos em concha do sítio cabeçuda. Revista de Arqueologia 27(2):150169.CrossRefGoogle Scholar
Klokler, D. 2016. A fauna do sambaqui cabeçuda: 65 anos depois. In: III Encuentro Latinoamericano de Zooarqueologia (ELAZ).Google Scholar
Klokler, D. 2017. Shelly coast: constructed seascapes in southern Brazil. Hunter Gatherer Research 3(1):87105.CrossRefGoogle Scholar
Klokler, D, Gaspar, MD, Scheel-Ybert, R. 2018. Why clam? Why clams? Shell mound construction in Southern Brazil. Journal of Archaeological Science: Reports 20:856863.Google Scholar
Kneip, A, Farias, DS, DeBlasis, P. 2018. Longa duração e territorialidade da ocupação sambaquieira na laguna de Santa Marta, Santa Catarina. Revista de Arqueologia 31(1): 2551.CrossRefGoogle Scholar
LeGrande, AN, Schmidt, GA. 2006. Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters 33(12):15.CrossRefGoogle Scholar
Leonel, R, Magalhães, A, Lunetta, J. 1983. Sobrevivência de Anomalocardia brasiliana (Gmelin, 1791) (Mollusca: Bivalvia), em diferentes salinidades.”. Boletim de Fisiologia Animal 7:63–72.Google Scholar
Libby, W. 1954. Radiocarbon dating. American Scientist 44(1):98112.Google Scholar
Lima, TA. 2000. Em busca dos frutos do mar: os pescadores-coletores do litoral centro-sul do Brasil. REVISTA USP (44):270–327.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.CrossRefGoogle ScholarPubMed
Ludemann, T, Michiels, HG, Nölken, W. 2004. Spatial patterns of past wood exploitation, natural wood supply and growth conditions: iIndications of natural tree species distribution by anthracological studies of charcoal-burning remains. European Journal of Forest Research 123(4):283292.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, Souza, R, Aguilera, O, Tenório, MC, Rapagnã, LC, Douka, K, et al. 2016. The Usiminas shellmound on the Cabo Frio Island: marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology 35:3642.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Belém, AL, Aguilera, O, Bertucci, T, Tenório, MC, Oliveira, FM, Chanca, IS, Carvalho, C, Souza, R. 2018. The marine reservoir effect on the coast of Rio de Janeiro: deriving ΔR values from fish otoliths and mollusk shells. Radiocarbon 60(4):11511168.CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, et al. 2015a. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments Methods Physics Research Section B 361.CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Moreira, VN, Alves, EQ, Carvalho, C, et al. 2017. Optimization of the amount of zinc in the graphitization reaction for radiocarbon AMS measurements at LAC-UFF. Radiocarbon 59(3):885891 CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J. 2015b. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of environmental radioactivity, 143:1419.CrossRefGoogle ScholarPubMed
Macario, KD, Scheel-Ybert, R, Ribeiro-Pinto, N, Pereira, BB, Amaral, D, Alves, EQ. 2021. Amourins shellmound: uncovering biodiversity and chronology through charcoal analyses. Radiocarbon 63(4):10851102.CrossRefGoogle Scholar
Macario, KD, Tenório, MC, Alves, EQ, Oliveira, FM, Chanca, IS, Netto, B, Carvalho, C, Souza, R, Aguilera, O, Guimarães, RB. 2017. Terrestrial mollusks as chronological records in Brazilian shellmounds. Radiocarbon 59(5):15611577.CrossRefGoogle Scholar
Mangerud, J. 1972. Radiocarbon dating of marine shells including a discussion of the apparent age of recent shells from Norway. Boreas 1(l):143172.CrossRefGoogle Scholar
McFadgen, B. 1982. Dating New Zealand archaeology by radiocarbon. New Zealand Journal of Science 25:379392.Google Scholar
McGregor, HV, Gagan, MK. 2003. Diagenesis and geochemistry of Porites corals from Papua New Guinea: implications for paleoclimate reconstruction. Geochimica et Cosmochimica Acta 67(12):21472156.CrossRefGoogle Scholar
Mendonça de Souza S. 1995. Estresse, doença e adaptabilidade. In: Congresso da Sociedade de Arqueologia Brasileira.Google Scholar
Metcalfe, C, Chalk, L. 1950. Anatomy of the dicotyledons. Vol. 2. Oxford, London: The Clarendon Press.Google Scholar
Milheira, R, Macario, K, Chanca, I, Alves, E. 2017. Archaeological earthen mound complex in the Patos Lagoon, southern Brazil: chronological model and freshwater influence. Radiocarbon 59(1):195214.CrossRefGoogle Scholar
Monti, D, Frenkiel, L, Moueza, M. 1991. Demography and growth of Anomalocardia Brasiliana (Gmelin) (Bivalvia: Veneridade) in a Mangrove, in Guadeloupe (French West Indies). Journal of Molluscan Studies 57:249257.CrossRefGoogle Scholar
Moskal-del Hoyo, M. 2013. Mid-Holocene forests from Eastern Hungary: new anthracological data. Review of Palaeobotany and Palynology 193:7081.CrossRefGoogle Scholar
Naito, YI, Chikaraishi, Y, Ohkouchi, N, Mukai, H, Shibata, Y, Honch, NV, Dodo, Y, Ishida, H, Amano, T, Ono, H, Yoneda, M. 2010. Dietary reconstruction of the Okhotsk culture of Hokkaido, Japan, based on nitrogen composition of amino acids: implications for correction of 14C marine reservoir effects on human bones. Radiocarbon 52(2):671681.CrossRefGoogle Scholar
Nascimento, DRD Jr 2010. Evolução sedimentar holocênica do delta do Rio Tubarão, estado de Santa Catarina [doctoral dissertation]. Universidade de São Paulo.Google Scholar
O’Connell, TC, Kneale, CJ, Tasevska, N, Kuhnle, GG. 2012. The diet-body offset in human nitrogen isotopic values: a controlled dietary study. American Journal of Physical Anthropology 149(3):426434.CrossRefGoogle ScholarPubMed
Oliveira, F, Macario, K, Carvalho, C, Moreira, V, Alves, EQ, Chanca, I, Diaz, M, et al. 2021. LAC-UFF status report: current protocols and recent developments. Radiocarbon 63(4):12331245.CrossRefGoogle Scholar
Pezo-Lanfranco, L, Eggers, S, Petronilho, C, Toso, A, da Rocha Bandeira, D, Von Tersch, M, dos Santos, AMP, Ramos da Costa, B, Meyer, R, Colonese, AC. 2018. Middle Holocene plant cultivation on the Atlantic Forest coast of Brazil? Royal Society Open Science 5:180432.CrossRefGoogle ScholarPubMed
Pimenta, FM, Campos, EJD, Miller, JL, Piola, AR. 2005. A numerical study of the Plata River plume along the southeastern South American continental shelf. Brazilian Journal of Oceanography 53(3–4):129146.CrossRefGoogle Scholar
Piola, AR, Campos, EJ, Möller, OO Jr, Charo, M, Martinez, C. 2000. Subtropical shelf front off eastern South America. Journal of Geophysical Research: Oceans: 105(C3):65656578.CrossRefGoogle Scholar
Piola, AR, Romero, SI. 2004. Analysis of space-time variability of the Plata River Plume. Gayana (Concepción) 68(2):482486.CrossRefGoogle Scholar
Piola, AR, Matano, RP, Palma, ED, Möller, OO Jr, Campos, EJ. 2005. The influence of the Plata River discharge on the western South Atlantic shelf. Geophysical Research Letters 32(1).CrossRefGoogle Scholar
Reid, RP, Macintyre, IG. 1998. Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. Journal of Sedimentary Research 68(5):928946.CrossRefGoogle Scholar
Rieth, TM, Hunt, TL, Lipo, C, Wilmshurst, JM. 2011. The 13th century Polynesian colonization of Hawai’i Island. Journal of Archaeological Science 38(10):27402749.CrossRefGoogle Scholar
Rios, E. 1994. Seashells of Brazil. Editora Fundação Universidade do Rio Grande, Rio Grande.Google Scholar
Rodrigues, A, Borges-Azevedo, C, Costa, R, Henry-Silva, G. 2013. Population structure of the bivalve Anomalocardia brasiliana, (Gmelin, 1791) in the semi-arid estuarine region of northeastern Brazil. Brazilian Journal of Biology 73(5):819833.CrossRefGoogle ScholarPubMed
Rodrigues-Carvalho, C, Mendonça de Souza, SM. 1998. Uso de adornos labiais pelos construtores do sambaqui de Cabeçuda, Santa Catarina, Brasil: Uma hipótese baseada no perfil dento- patológico. Revista de Arqueologia 11:4355.CrossRefGoogle Scholar
Rodrigues-Carvalho, C, Scheel-Ybert, R, Gaspar, M, Bianchini, GF, Klokler, DM, Andrade, MN, Borges, DD. 2011. Cabeçuda-II: um conjunto de amoladores-polidores evidenciado em Laguna, SC. Revista do Museu de Arqueologia e Etnologia (21):401–405.Google Scholar
Rohr, J. 1961. Pesquisas paleoetnográficas na Ilha de Santa Catarina e notícias prévias sobre sambaquis da Ilha de São Francisco do Sul. Pesquisas 12:118.Google Scholar
Russell, N, Cook, GT, Ascough, PL, Scott, EM, Dugmore, AJ. 2011. Examining the inherent variability of ΔR: new methods of presenting ΔR values and implications for MRE studies. Radiocarbon 53(2):277288.CrossRefGoogle Scholar
Scheel-Ybert, R. 2001. Man and vegetation in southeastern Brazil during the Late Holocene. Journal of Archaeological Science 28:471480.CrossRefGoogle Scholar
Scheel-Ybert, R. 2020. Anthracology (charcoal analysis) In: Smith, C, editor. Encyclopedia of global archaeology. New York/EUA: Springer-Verlag.Google Scholar
Scheel-Ybert, R. 2016. Charcoal collections of the world. IAWA Journal 37:489505.CrossRefGoogle Scholar
Scheel-Ybert, R, Rodrigues-Carvalho, C, DeBlasis, P, Gaspar, M, Klokler, DM. 2020. Mudanças e permanências no Sambaqui de Cabeçuda (Laguna, SC. Revista de Arqueologia 33:169197.CrossRefGoogle Scholar
Scheel-Ybert, R, Boyadjian, C. 2020. Gardens on the coast: Considerations on food production by Brazilian shellmound builders. Journal of Anthropological Archaeology 60:101211.CrossRefGoogle Scholar
Schiffer, MB. 1986. Radiocarbon dating and the “old wood” problem: the case of the Hohokam chronology. Journal of Archaeological Science 13(1):1330.CrossRefGoogle Scholar
Schoeninger, MJ, DeNiro, MJ. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48(4):625639.CrossRefGoogle Scholar
Schoeninger, MJ, DeNiro, MJ, Tauber, H. 1983. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science (New York):1381–1383.CrossRefGoogle Scholar
Schwarcz, HP, Melbye, J, Katzenberg, M, Knyf, M. 1985. Stable isotopes in human skeletons of southern Ontario: reconstructing Palaeodiet. Journal of Archaeological Science 12(3):187206.CrossRefGoogle Scholar
Sepulcre, S, Durand, N, Bard, E. 2009. Mineralogical determination of reef and periplatform carbonates: calibration and implications for paleoceanography and radiochronology. Global and Planetary Change 66(1–2):19.CrossRefGoogle Scholar
Sigman, DM, Boyle, EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859869.CrossRefGoogle ScholarPubMed
Stuiver, M, Polach, HA. 1977. Reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Stuiver, M, Pearson, G, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28:9801021.CrossRefGoogle Scholar
Tagliabue, A, Bopp, L. 2008. Towards understanding global variability in ocean carbon-13. Global Biogeochemical Cycles 22(1):113.CrossRefGoogle Scholar
Tanaka, APB, Giannini, PCF, Fornari, M, Nascimento, DR Jr, Sawakuchi, AO, Rodrigues, SI, Menezes, PML, DeBlasis, P, Porsani, JL. 2009. A planície costeira holocênica de Campos Verdes (Laguna, SC): evolução sedimentar inferida a partir de georradar (GPR), granulometria e minerais pesados. São Paulo, Revista Brasileira de Geociências 39(4): 750766.Google Scholar
Taylor, RE. 1987. Radiocarbon dating: an archaeological perspective.CrossRefGoogle Scholar
Toby, BH, Von Dreele, RB. 2013. GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. Journal of Applied Crystallography 46(2):544549.CrossRefGoogle Scholar
Toniolo, T, Giannini, PCF, Angulo, RJ, de Souza, MC, Pessenda, LCR, Spotorno-Oliveira, P. 2020. Sea-level fall and coastal water cooling during the Late Holocene in southeastern Brazil based on vermetid bioconstructions. Marine Geology 428:106281.CrossRefGoogle Scholar
Toso, A, Hallingstad, E, McGrath, K, Fossile, T, Conlan, C, Ferreira, J, da Rocha Bandeira, D, Giannini, PCF, Gilson, SP, de Melo Reis Bueno, L, Bastos, MQR. 2021. Fishing intensification as response to Late Holocene socio-ecological instability in southeastern South America. Scientific Reports 11(1):114.CrossRefGoogle ScholarPubMed
Tucker, M, Wright, V. 1990. Carbonate sedimentology. Oxford: Blackwell Science.CrossRefGoogle Scholar
Van de Merwe, N. 1982. Carbon isotopes, photosynthesis, and archaeology. American Scientist 70(6):596606.Google Scholar
van Klinken, G. 1999. Bone collagen quality indicators for paleodietary and radiocarbon measurements. Journal of Archaeological Sciences 26(6):687695.CrossRefGoogle Scholar
Vernet, J. 1999. Reconstructing vegetation and landscapes in the Mediterranean: the contribution of anthracology. In: Environmental reconstruction in Mediterranean landscape archaeology. p. 25–33.CrossRefGoogle Scholar
Villagran, XS, Giannini, PC. 2014. Shell mounds as environmental proxies on the southern coast of Brazil. Holocene 24(8):10091016.CrossRefGoogle Scholar
Wagner, G, Hilbert, K, Bandeira, D, Tenório, MC, Okumura, MM. 2011. Sambaquis (shell mounds) of the Brazilian coast. Quaternary International 239:5160.CrossRefGoogle Scholar
Walker, PL, DeNiro, MJ. 1986. Stable nitrogen and carbon isotope ratios in bone collagen as indices of prehistoric dietary dependence on marine and terrestrial resources in Southern California. American Journal of Physical Anthropology 71(1):5161.CrossRefGoogle ScholarPubMed
Waterbolk, HT. 1971. Working with radiocarbon dates. Proceedings of the Prehistoric Society 37(2):1533.CrossRefGoogle Scholar
Webb, GE, Price, GJ, Nothdurft, LD, Deer, L, Rintoul, L. 2007. Crytic meteoric diagenesis in freshwater bivalves: implications for radiocarbon dating. Geology 35(9):803806.CrossRefGoogle Scholar
Webb, EC, Lewis, J, Shain, A, Kastrisianaki-Guyton, E, Honch, NV, Stewart, A, Miller, B, Tarlton, J, Evershed, RP. 2017. The influence of varying proportions of terrestrial and marine dietary protein on the stable carbon-isotope compositions of pig tissues from a controlled feeding experiment. Science and Technology of Archaeological Research 3(1):2844.CrossRefGoogle Scholar
Wilmshurst, JM, Hunt, TL, Lipo, CP, Anderson, AJ. 2011. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proceedings of the National Academy of Sciences 108(5):18151820.CrossRefGoogle ScholarPubMed
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 259:320329.CrossRefGoogle Scholar
Supplementary material: File

Alves et al. supplementary material

Alves et al. supplementary material

Download Alves et al. supplementary material(File)
File 12.4 MB