Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T07:37:33.735Z Has data issue: false hasContentIssue false

APPLICATION OF 14C METHOD TO CHRONOLOGY OF THE CROATIAN DINARIC KARST—A CASE OF THE PLITVICE LAKES

Published online by Cambridge University Press:  25 August 2021

Ines Krajcar Bronić*
Affiliation:
Ruđer Bošković Institute, Bijenička c 54, 10000 Zagreb, Croatia
Jadranka Barešić
Affiliation:
Ruđer Bošković Institute, Bijenička c 54, 10000 Zagreb, Croatia
Andreja Sironić
Affiliation:
Ruđer Bošković Institute, Bijenička c 54, 10000 Zagreb, Croatia
*
*Corresponding author. Email: [email protected]

Abstract

Karst environments preserve some of the best archives of past climate, vegetation, hydrology, anthropogenic impact, and landscape evolution providing that a reliable chronology can be established. Here we present an example of the system of the Plitvice Lakes (Dinaric karst, Croatia), which is characterized by intensive tufa and lake sediment formations. The radiocarbon dating method, combined with some other dating methods and various geochemical and isotope analyses, showed that the Plitvice Lakes system in the present form has existed for about 8000 years. Older tufa deposits were dated to warm interglacial periods. A long-term comprehensive multi-proxy study showed that all environmental compartments (atmosphere, various water bodies, soil, bedrock, DIC, terrestrial and aquatic biota, and of course various secondary carbonates) must be included in order to obtain trustworthy results.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barešić, J, Horvatinčić, N, Roller-Lutz, Z. 2011a. Spatial and seasonal variations in the stable C isotope composition of dissolved inorganic carbon and in physico-chemical water parameters in the Plitvice Lakes system. Isotopes in Environmental and Health Studies 47:316329.CrossRefGoogle ScholarPubMed
Barešić, J, Horvatinčić, N, Vreča, P, Sironić, A. 2011b. Distribution of authigenic and allogenic fractions in recent lake sediment: isotopic and chemical compositions. Acta Carsologica 40(2):293305. doi: 10.3986/ac.v40i2.14.Google Scholar
Bencetić Klaić, Z, Rubinić, J, Kapelj, S. 2018. Review of research on Plitvice Lakes, Croatia in the fields of meteorology, climatology, hydrology, hydrogeochemistry and physical limnology. Geofizika 35:189278. doi: 10.15233/gfz.2018.35.9.CrossRefGoogle Scholar
Capezzuoli, E, Gandin, A, Pedley, M. 2014. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology 61:121.CrossRefGoogle Scholar
Chafetz, HS, Srdoč, D, Horvatinčić, N. 1994. Early diagenesis of Plitvice Lakes waterfall and barrier travertine deposits. Geographie Physique et Quaternaire 48:247256.CrossRefGoogle Scholar
Chen, JA, Zhang, DD, Wang, SJ, Xiao, TF, Huang, RE. 2004. Factors controlling tufa deposition in natural waters and waterfall sites. Sedimentary Geology 166:3532366.CrossRefGoogle Scholar
Della Porta, G. 2015. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. Geological Society, London, Special Publications 418(1):1768. doi: 10.1144/sp418.4 CrossRefGoogle Scholar
Fairchild, IJ, Frisia, S, Borsato, A, Tooth, A. 2007. Speleothems. In: Nash, DJ, McLaren, SJ, editors. Geochemical sediments and landscapes. Oxford: Blackwell Publishing. p. 200245.CrossRefGoogle Scholar
Faivre, S, Bakran-Petricioli, T, Barešić, J, Horvatić, D, Macario, K. 2019. Relative sea-level change and climate change in the Northeastern Adriatic during the last 1.5 ka (Istria, Croatia). Quaternary Science Reviews 222:105909.CrossRefGoogle Scholar
Filipčić, A. 1998. Klimatska regionalizacija Hrvatske po W. Köppenu za standardno razdoblje 1961–1990. u odnosu na razdoblje 1931–1960 [Climatic regions of Croatia according to W. Köppen for 1961–1990 and 1931–1960 periods]. Acta Geographica Croatica 33:714. In Croatian.Google Scholar
Ford, TD, Pedley, HM. 1996. A review of tufa and travertine deposits of the world. Earth-Science Reviews 41:117175.CrossRefGoogle Scholar
Ford, DC, Williams, P. 2007. Karst hydrogeology and geomorphology. Chichester: John Wiley. 562 p. doi: 10.1002/9781118684986.CrossRefGoogle Scholar
Frančišković-Bilinski, S, Barišić, D, Vertačnik, A, Bilinski, H, Prohić, E. 2004. Characterization of tufa from the Dinaric karst of Croatia: mineralogy, geochemistry and discussion of climate conditions. Facies 50:183193.CrossRefGoogle Scholar
Frisia, S, Borsato, A. 2010. Karst. Chapter 6. In: Alonso Zarza AM, Tanner LH (Eds), Carbonates in continental settings—facies, environments and processes. Developments in Sedimentology 61: 269–318. doi: 10.1016/S0070-4571(09)06106-8.CrossRefGoogle Scholar
Gandin, A, Capezzuoli, E. 2008. Travertine versus calcareous tufa: distinctive petrologic features and stable isotopes signatures. Italian Journal of Quaternary Sciences 21:125136.Google Scholar
Golubić, S, Violante, C, Plenković-Moraj, A, Grgasović, T. 2008. Travertines and calcareous tufa deposits: an insight into diagenesis. Geologia croatica 61:363378.CrossRefGoogle Scholar
Horvatinčić, N, Čalić, R, Geyh, M. 2000. Interglacial growth of tufa in Croatia. Quaternary Research 53:185195.CrossRefGoogle Scholar
Horvatinčić, N, Barešić, J, Babinka, S, Obelić, B, Krajcar Bronić, I, Vreča, P, Suckow, A. 2008. Towards a deeper understanding how carbonate isotopes (14C, 13C, 18O) reflect environmental changes: a study with recent 210Pb-dated sediments of the Plitvice Lakes, Croatia. Radiocarbon 50:233253.CrossRefGoogle Scholar
Horvatinčić, N, Barešić, J, Krajcar Bronić, I, Obelić, B. 2004. Measurement of low 14C activities in a liquid scintillation counter in the Zagreb Radiocarbon Laboratory. Radiocarbon 46(1):105116.CrossRefGoogle Scholar
Horvatinčić, N, Briansó, JL, Obelić, B, Barešić, J, Krajcar Bronić, I. 2006. Study of pollution of the Plitvice Lakes by water and sediment analyses. Water Air and Soil Pollution: Focus 6;475485.CrossRefGoogle Scholar
Horvatinčić, N, Krajcar Bronić, I, Obelić, B. 2003. Differences in the 14C age, δ13C and δ18O of Holocene tufa and speleothem in the Dinaric Karst. Palaeogeography, Palaeoclimatology, Palaeoecology 193:139157.CrossRefGoogle Scholar
Horvatinčić, N, Sironić, A, Barešić, J, Krajcar Bronić, I, Todorović, N, Nikolov, J, Hansman, J, Krmar, M. 2014. Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia. Central European Journal of Physics 12(10):707713. doi: 10.2478/s11534-014-0490-7.Google Scholar
Horvatinčić, N, Sironić, A, Barešić, J, Sondi, I, Krajcar Bronić, I, Borković, D. 2018. Mineralogical, organic and isotopic composition as Palaeoenvironmental records in the lake sediments of two lakes, the Plitvice Lakes, Croatia. Quaternary International 494:300313. doi: 10.1016/j.quaint.2017.01.022.CrossRefGoogle Scholar
Köppen, W. 1936. Das geographische System der Klimate. In: Köppen W, Geiger G, editors. Handbuch der Klimatologie. Berlin: Gebrueder Borntraeger. p. 1–44.Google Scholar
Krajcar Bronić, I, Barešić, J, Sironić, A, Lovrenčić Mikelić, I, Borković, D, Horvatinčić, N, Kovač, Z. 2020. Isotope composition of precipitation, groundwater and surface and lake waters from the Plitvice Lakes, Croatia. Water 12(9):2414. doi: 10.3390/w12092414.CrossRefGoogle Scholar
Krajcar Bronić, I, Horvatinčić, N, Srdoč, D, Obelić, B. 1986. On the initial 14C activity in karst aquifers with short mean residence time. Radiocarbon 28:436440.CrossRefGoogle Scholar
Krajcar Bronić, I, Horvatinčić, N, Srdoč, D, Obelić, B. 1992. Experimental determination of the 14C initial activity of calcareous deposits. Radiocarbon 34:593601.CrossRefGoogle Scholar
Krajcar Bronić, I, Obelić, B, Horvatinčić, N, Barešić, J, Sironić, A, Minichreiter, K. 2010. Radiocarbon application in environmental science and archaeology in Croatia. Nuclear Instruments and Methods in Physics Research A 619(1–3):491496 doi: 10.1016/j.nima.2009.11.032.CrossRefGoogle Scholar
Pedley, M. 2000. Ambient temperature freshwater microbial tufas. In: Riding RE, Awramik SM, editors. Microbial sediments. Berlin: Springer. p. 179–186.CrossRefGoogle Scholar
Pedley, M. 2009. Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology 56(2998):221246.CrossRefGoogle Scholar
Peel, MC, Finlyanson, BL, McMahon, TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11:16331644.CrossRefGoogle Scholar
Pentecost, A. 1993. British travertines: a review. Proceedings of the Geologists’ Association 104:2939.CrossRefGoogle Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24. doi: 10.1186/2050-7445-1-24.CrossRefGoogle Scholar
Polšak, A, Juriša, M, Šparica, M, Šimunić, A. 1977. Osnovna geološka karta, SFRJ, list Bihać, 1:100 000 (Basic geological map SFRY, Sheet Bihać; 1:100 000. The Bihać Sheet). Savezni geološki zavod, Beograd, SFR Yugoslavia.Google Scholar
Sironić, A, Alegro, A, Horvatinčić, N, Barešić, J., Brozinčević, A, Vurnek, M, Krajcar Bronić, I, Borković, D, Lovrenčić Mikelić, I. 2021. Isotope fractionation in karst aquatic mosses. Isotopes in Environmental and Health Studies 57:142165. doi: 10.1080/10256016.2020.1852235.CrossRefGoogle ScholarPubMed
Sironić, A, Barešić, J, Horvatinčić, N, Brozinčević, A, Vurnek, M, Kapelj, S. 2017. Changes in the geochemical parameters of karst lakes over the past three decades—the case of Plitvice Lakes, Croatia. Applied Geochemistry 78:1222. doi: 10.1016/j.apgeochem.2016.11.013.CrossRefGoogle Scholar
Sironić, A, Krajcar Bronić, I, Horvatinčić, N, Barešić, J, Borković, D, Vurnek, M, Lovrenčić Mikelić, I. 2020. Carbon isotopes in dissolved inorganic carbon as tracers of carbon sources in karst waters of the Plitvice Lakes, Croatia. In: Bojar AV, Pelc A, Lecuyer C, editors. Stable isotope studies of the water cycle and terrestrial environments. London: Geological Society. Art. 49. Geological Society of London Special Publications 507. doi: 10.1144/SP507-2020-49.CrossRefGoogle Scholar
Sironić, A, Krajcar Bronić, I, Horvatinčić, N, Barešić, J, Obelić, B, Felja, I. 2013. Status report on the Zagreb radiocarbon laboratory—AMS and LSC results of VIRI intercomparison samples. Nuclear Instruments and Methods in Physics Research B 294:185188. doi: 10.1016/j.nimb.2012.01.048.CrossRefGoogle Scholar
Sliepčević, A, Planinić, J. 1974. Određivanje starosti sekundarnih vapnenačkih taloga metodom radioaktivnog ugljika (Age determination of secondary carbonate sediments by radiocarbon method). Naše jame 15:71–75. In Croatian.Google Scholar
Srdoč, D, Breyer, B, Sliepčević, A. 1971. Ruđer Bošković Institute Radiocarbon Measurements I. Radiocarbon 13:135140.CrossRefGoogle Scholar
Srdoč, D, Horvatinčić, N, Ahel, M, Giger, W, Schaffner, C, Krajcar Bronić, I, Petricioli, D, Pezdič, J, Marčenko, E, Plenković, A. 1992. Anthropogenic influence on the 14C activity of recent lake sediment: a case study. Radiocarbon 34:585592 CrossRefGoogle Scholar
Srdoč, D, Horvatinčić, N, Obelić, B, Krajcar Bronić, I, O’Malley, P. 1986a. The effects of contamination of calcareaous sediments on their radiocarbon age. Radiocarbon 28:510514.CrossRefGoogle Scholar
Srdoč, D, Horvatinčić, N, Obelić, B, Krajcar, I, Sliepčević, A. 1985a. Procesi taloženja kalcita u krškim vodama s posebnim osvrtom na Plitvička jezera (Calcite deposition processes in karstwaters with special emphasis on the Plitvice Lakes, Yugoslavia). Carsus Iugoslaviae (Krš Jugoslavije) 11(4-6):101–204. In Croatian with English abstract.Google Scholar
Srdoč, D, Horvatinčić, N, Obelić, B, Sliepčević, A. 1983. Radiocarbon dating of tufa in palaeoclimatic studies. Radiocarbon 25:421428.CrossRefGoogle Scholar
Srdoč, D, Krajcar Bronić, I, Horvatinčić, N, Obelić, B. 1986b. The increase of 14C activity of dissolved inorganic carbon along the river course. Radiocarbon 28:515521.CrossRefGoogle Scholar
Srdoč, D, Obelić, B, Horvatinčić, N, Culiberg, M, Šercelj, A, Sliepčević, A. 1985b. Radiocarbon dating and pollen analyses of two peat bogs in the Plitvice National Park area. Acta Botanica Croatica 44;4146.Google Scholar
Srdoč, D, Obelić, B, Horvatinčić, N, Sliepčević, A. 1980. Radiocarbon dating of calcareous tufa; how reliable data can we expect? Radiocarbon 22:858862.CrossRefGoogle Scholar
Srdoč, D, Obelić, B, Horvatinčić, N, Krajcar Bronić, I, Marčenko, E, Merkt, S, Wong, H, Sliepčević, A. 1986c. Radiocarbon dating of lake sediments from two karstic lakes in Yugoslavia. Radiocarbon 28:495502.CrossRefGoogle Scholar
Srdoč, D, Osmond, J, Horvatinčić, N, Dabous, A, Obelić, B. 1994. Radiocarbon and uranium-series dating of the Plitvice Lakes travertines. Radiocarbon 36(2):203219.CrossRefGoogle Scholar
Surić, M, Czuppon, G, Lončarić, R, Bočić, N, Lončar, N, Bajo, P, Drysdale, R. 2020. stable isotope hydrology of cave groundwater and its relevance for speleothem-based paleoenvironmental reconstruction in Croatia. Water 12(9):2386, 23. doi: 10.3390/w12092386.CrossRefGoogle Scholar
Surić, M, Juračić, M, Horvatinčić, N, Krajcar Bronić, I. 2005. Late Pleistocene–Holocene sea-level rise and the pattern of coastal karst inundation—records from submerged speleothems along the eastern Adriatic coast (Croatia). Marine Geology 214:163175. doi: 10.1016/j.margeo.2004.10.030.CrossRefGoogle Scholar
Tanner, LH. 2010. Continental carbonates as indicators of paleoclimate. Chapter 4. In: Alonso Zarza AM, Tanner LH, editors. Carbonates in continental settings—facies, environments and processes. Developments in Sedimentology 61:179–214. doi: 10.1016/S0070-4571(09)06204-9.CrossRefGoogle Scholar
Thorpe, PM, Otlet, RL, Sweeting, MM. 1980. Hydrological implications from 14C profiling of UK tufa. Radiocarbon 22(3):897908.CrossRefGoogle Scholar
Wray, RAL. 1997. A global review of solutional weathering forms on quartz sandstones. Earth-Science Reviews 42:137160. doi: 10.1016/S0012-8252(96)00056-6.CrossRefGoogle Scholar
Zalasiewicz, J, Waters, CN, Williams, M, Barnosky, AD, Oreskes, N. 2015. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International 383:196203.CrossRefGoogle Scholar
Zippel, B, Neu, TR. 2011. Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Applied and Environmental Microbiology 77:505516.CrossRefGoogle ScholarPubMed
Supplementary material: File

Krajcar Bronić et al. supplementary material

Krajcar Bronić et al. supplementary material

Download Krajcar Bronić et al. supplementary material(File)
File 66.7 KB