Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T20:58:13.104Z Has data issue: false hasContentIssue false

Advances in Handling Small Radiocarbon Samples at the Laboratoire de Mesure du Carbone 14 in Saclay, France

Published online by Cambridge University Press:  09 February 2016

E Delqué-Količ*
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
I Caffy
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
C Comby-Zerbino
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
J P Dumoulin
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
S Hain
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
M Massault
Affiliation:
IDES, UMR 8148 CNRS, Université Paris-Sud11, Bâtiment 504, Rue du Belvédère, Campus Universitaire d'Orsay, 91405 Orsay Cedex, France
C Moreau
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
A Quiles
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
V Setti
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
C Souprayen
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
J F Tannau
Affiliation:
LSCE, CEA/DSM, Domaine du CNRS, Bâtiment 12, 91198 Gif sur Yvette, France
B Thellier
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
J Vincent
Affiliation:
LMC14, CEA Saclay, Bâtiment 450 porte 4E, 91191 Gif sur Yvette, France
*
2Corresponding author. Email: [email protected].

Abstract

The Artemis accelerator mass spectrometry (AMS) facility, installed in 2003 in Saclay, France, is devoted to radiocarbon measurements. Samples are submitted by scientists in the fields of Quaternary geology, environmental sciences, and archaeology. The entire preparation process, originally optimized for samples with about 1 mg of carbon, has been tested in recent years for samples with a lower carbon content. In particular, we prepared and measured carbonate and organic background and reference samples ranging in mass from 0.01 to 1 mg C. These tests helped define our protocol's practical limits and determine necessary improvements. Furthermore, our experiments demonstrated that satisfactory graphitization yields (80% and higher) and low background values can be obtained with samples down to 0.2 mg of carbon. For handling smaller samples, we developed a specific process. We tested smaller reactors (5 mL in volume) and adapted the reduction parameters (H2 pressure and temperature) accordingly. We also tested the effect of a chemical water trap on graphitization yields and 14C results. This paper presents in detail the aforementioned developments and reports the 14C results obtained for background and standard small samples prepared with the modified reactors.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, JP, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–9.CrossRefGoogle Scholar
Delqué-Količ, E, Comby-Zerbino, C, Ferkane, S, Moreau, C, Dumoulin, JP, Caffy, I, Souprayen, C, Quilès, A, Bavay, D, Hain, S, Setti, V. 2013. Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France. Nuclear Instruments and Methods in Physics Research B 294:189–93.CrossRefGoogle Scholar
De Rooij, M, van der Plicht, J, Meijer, HAJ. 2010. Porous iron pellets for AMS 14C analysis of small samples down to ultra-microscale size (10–25 μg). Nuclear Instruments and Methods in Physics Research B 268(7–8):947–51.Google Scholar
Ertunç, T, Xu, S, Bryant, CL, Maden, C, Murray, C, Currie, M, Freeman, SPHT. 2005. Progress in AMS target production of sub-milligram samples at the NERC radiocarbon laboratory. Radiocarbon 47(3):453–64.CrossRefGoogle Scholar
Hua, Q, Zoppi, U, Williams, AA, Smith, AM. 2004. Small-mass AMS radiocarbon analysis at ANTARES. Nuclear Instruments and Methods in Physics Research B 223–224:284–92.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.Google Scholar
Pearson, A, McNichol, AP, Schneider, RJ, von Reden, KF. 1998. Microscale AMS 14C measurement at NOSAMS. Radiocarbon 40(1):6175.Google Scholar
Rinyu, L, Futó, I, Kiss, ÁZ, Molnár, M, Svingor, É, Quarta, G, Calcagnile, L. 2007. Performance test of a new graphite target production facility in ATOMKI. Radiocarbon 49(2):217–24.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Druffel-Rodriguez, KC, Griffin, S, Mazon, M. 2004. Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: a report on sample preparation at KCCAMS at the University of California, Irvine. Radiocarbon 46(1): 165–73.Google Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupré, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research B 259(1):293–302.Google Scholar
Smith, AM, Petrenko, VV, Hua, Q, Southon, J, Brailsford, G. 2007. The effect of N2O, catalyst, and means of water vapor removal on the graphitization of small CO2 samples. Radiocarbon 49(2):245–54.Google Scholar
Turnbull, J, Prior, C, Graphitization Workshop Participants. 2010. Report on the 20th International Radiocarbon Conference Graphitization Workshop. Radiocarbon 52(3): 1230–5.Google Scholar
von Reden, KF, McNichol, AP, Pearson, A, Schneider, RJ. 1998. 14C AMS measurements of <100μg samples with a high-current system. Radiocarbon 40(1):247–53.Google Scholar