Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T04:27:30.825Z Has data issue: false hasContentIssue false

14C Analysis and Sample Preparation at the New Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA)

Published online by Cambridge University Press:  09 February 2016

Sönke Szidat*
Affiliation:
Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Gary A Salazar
Affiliation:
Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Edith Vogel
Affiliation:
Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Michael Battaglia
Affiliation:
Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Lukas Wacker
Affiliation:
Laboratory of Ion Beam Physics, ETH Hönggerberg, Zurich, Switzerland
Hans-Arno Synal
Affiliation:
Laboratory of Ion Beam Physics, ETH Hönggerberg, Zurich, Switzerland
Andreas Türler
Affiliation:
Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland
*
3. Corresponding author. Email: [email protected].

Abstract

The University of Bern has set up the new Laboratory for the Analysis of Radiocarbon with AMS (LARA) equipped with an accelerator mass spectrometer (AMS) MICADAS (MIni CArbon Dating System) to continue its long history of 14C analysis based on conventional counting. The new laboratory is designated to provide routine 14C dating for archaeology, climate research, and other disciplines at the University of Bern and to develop new analytical systems coupled to the gas ion source for 14C analysis of specific compounds or compound classes with specific physical properties. Measurements of reference standards and wood samples dated by dendrochronology demonstrate the quality of the 14C analyses performed at the new laboratory.

Type
Methodology: Generaland Bones
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fahrni, SM, Wacker, L, Synal, H-A, Szidat, S. 2013. Improving a gas ion source for 14C AMS. Nuclear Instruments and Methods in Physics Research B 294:320–7.CrossRefGoogle Scholar
Güttler, D, Wacker, L, Kromer, B, Friedrich, M, Synal, H-A. 2013. Evidence of 11-year solar cycles in tree rings from 1010 to 1110 AD – progress on high precision AMS measurements. Nuclear Instruments and Methods in Physics Research B 294:459–63.Google Scholar
Houtermans, FG, Oeschger, H. 1958. Proportionalzählrohr zur Messung schwacher Aktivitäten weicher ß-Strahlung. Helvetica Physica Acta 31(2):117–26.Google Scholar
Le Clercq, M, van der Plicht, J, Gröning, M. 1998. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295–7.Google Scholar
Němec, M, Wacker, L, Gäggeler, H. 2010a. Optimization of the graphitization process at AGE-1. Radiocarbon 52(2–3):1380–93.Google Scholar
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010b. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2–3):1358–70.Google Scholar
Perron, N, Szidat, S, Fahrni, S, Ruff, M, Wacker, L, Prévôt, ASH, Baltensperger, U. 2010. Towards on-line 14C analysis of carbonaceous aerosol fractions. Radiocarbon 52(2–3):761–8.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Ruff, M, Wacker, L, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S. 2007. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49(2):307–14.Google Scholar
Ruff, M, Fahrni, SM, Gäggeler, HW, Hajdas, I, Suter, M, Synal, H-A, Szidat, S, Wacker, L. 2010. Online radiocarbon measurements of small samples using Elemental Analyzer and MICADAS gas ion source. Radiocarbon 52(4):1645–56.Google Scholar
Sigl, M, Jenk, TM, Kellerhals, T, Szidat, S, Gäggeler, HW, Wacker, L, Synal, H-A, Boutron, C, Barbante, C, Gabrieli, J, Schwikowski, M. 2009. Towards radiocarbon dating of ice cores. Journal of Glaciology 55(194):986–96.CrossRefGoogle Scholar
Synal, H-A. 2013. Developments in accelerator mass spectrometry. International Journal of Mass Spectrometry 349–350:192202.CrossRefGoogle Scholar
Synal, H-A, Wacker, L. 2010. AMS measurement technique after 30 years: possibilities and limitations of low energy systems. Nuclear Instruments and Methods in Physics Research B 268(7–8):701–7.CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.Google Scholar
Szidat, S. 2009a. Sources of Asian haze. Science 323(5913):470–1.Google Scholar
Szidat, S. 2009b. Radiocarbon analysis of carbonaceous aerosols: recent developments. Chimia 63(3):157–61.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, H-A. 2010a. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976–9.CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010b. A revolutionary graphitization system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931–4.Google Scholar
Wacker, L, Fahrni, SM, Hajdas, I, Molnar, M, Synal, H-A, Szidat, S, Zhang, YL. 2013a. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research B 294:315–9.Google Scholar
Wacker, L, Fülöp, RH, Hajdas, I, Molnár, M, Rethemeyer, J. 2013b. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nuclear Instruments and Methods in Physics Research B 294:214–7.CrossRefGoogle Scholar
Zhang, YL, Perron, N, Ciobanu, VG, Zotter, P, Minguillón, MC, Wacker, L, Prévôt, ASH, Baltensperger, U, Szidat, S. 2012. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols. Atmospheric Chemistry and Physics 12(22):10,84156.CrossRefGoogle Scholar