Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-19T20:36:38.906Z Has data issue: true hasContentIssue false

14C AMS measurement of CO2 samples with the high throughput HVE gas interface system

Published online by Cambridge University Press:  18 September 2024

G Scognamiglio*
Affiliation:
High Voltage Engineering Europa B.V., 3812 RR Amersfoort, Netherlands
M Klein
Affiliation:
High Voltage Engineering Europa B.V., 3812 RR Amersfoort, Netherlands
A Stolz
Affiliation:
Institute of Nuclear Physics, University of Cologne, 50937 Cologne, Germany
R Walet
Affiliation:
High Voltage Engineering Europa B.V., 3812 RR Amersfoort, Netherlands
D Mous
Affiliation:
High Voltage Engineering Europa B.V., 3812 RR Amersfoort, Netherlands
*
Corresponding author: G Scognamiglio; Email: [email protected]

Abstract

The newly designed HVE gas interface enables the AMS measurement of carbon samples in CO2 form. The CO2, e.g. resulting from the sample combustion in an elemental analyzer, is adsorbed in a zeolite trap and subsequently transferred to a motor-driven syringe. Once diluted with He, the gas mixture is transferred into the ion source of the AMS system. A carbon ion beam is formed in the ion source and mass-analyzed by the AMS system, resulting in 13C/12C and 14C/12C isotopic ratios. The HVE gas interface features two traps and two syringes to maximize the sample throughput, which results in more than 10 samples per hour. The first performance results of CO2 gas sample AMS measurements that were performed with the HVE gas interface in combination with the HVE 210 kV AMS system are presented in this paper. The measurements show that the gas interface contribution to the 14C/12C background is in the 10–15 level and to the precision is at or below 1%.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Latin American Radiocarbon Conference, Mexico City, 4–8 Sept. 2023

References

Braione, E, Maruccio, L, Quarta, G, D’Elia, M and Calcagnile, L (2015) A new system for the simultaneous measurement of δ13C and δ15N by IRMS and radiocarbon by AMS on gaseous samples: Design features and performances of the gas handling interface. Nuclear Instruments and Methods in Physics Research Section B 361, 387391.Google Scholar
Bronk Ramsey, C and Hedges, REM (1994) Gas handling systems for radiocarbon dating by AMS. Nuclear Instruments and Methods in Physics Research Section B 92, 105110.Google Scholar
Duijn, E, Sandman, H, Grossouw, D, Mocking, JAJ, Coulier, L and Vaes, WHJ (2014) Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range. Analytical Chemistry 86(15), 76357641.Google Scholar
European Patent EP 18177774.9.Google Scholar
Isotoptech Zrt. (2024) Ede Hertelendi Laboratory of Environmental Studies. https://www.isotoptech.eu/en/v.Google Scholar
Klein, M and Mous, DJW (2017) Technical improvements and performance of the HVE AMS sputter ion source SO-110. Nuclear Instruments and Methods in Physics Research Section B 406, 210213.Google Scholar
Klein, M, Podaru, NC and Mous, DJW (2019) A novel dedicated HVE 14C AMS system. Radiocarbon 61(5), 14411448.Google Scholar
Klein, M, Mous, DJW and Scognamiglio, G (2023) Routine performance and biomedical/pharmaceutical applications of the HVE low-energy 14C AMS system. Nuclear Instruments and Methods in Physics Research Section B 537, 125128.Google Scholar
Linde PLC (2024) Global Industrial Gases. https://www.linde-gas.com/en/index.html.Google Scholar
Scognamiglio, G, Klein, M, van der Hoef, FL, Podaru, NC and Mous, DJW (2021) Low-energy 14C and multi-element HVE AMS systems. Nuclear Instruments and Methods in Physics Research B 492, 2933.Google Scholar
Stolz, A (2020) Einrichtung und Weiterentwicklung eines 14CO2-Systems am 6 MV TANDETRON Beschleuniger des CologneAMS. PhD thesis, University of Cologne.Google Scholar
Stolz, A, Dewald, AR, Altenkirch, R, Herb, S, Heinze, S, Schiffer, M, Feuerstein, C, Müller-Gatermann, C, Wotte, A, Rethemeyer, J and Dunai, T (2017) Radiocarbon measurements of small gaseous samples at CologneAMS. Nuclear Instruments and Methods in Physics Research Section B 406(A), 283286.Google Scholar
Stolz, A, Dewald, A, Heinze, S, Altenkirch, R, Hackenberg, G, Herb, S, Müller-Gatermann, C, Schiffer, M, Zitzer, G, Wotte, A, Rethemeyer, J and Dunai, T (2019) Improvements in the measurement of small 14CO2 samples at CologneAMS. Nuclear Instruments and Methods in Physics Research B 439, 7075.Google Scholar
Wacker, L, Fahrni, SM, Hajdas, I, Molnar, M, Synal, H-A, Szidat, S and Zhang, YL (2013) A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research Section B 294, 315319.Google Scholar