Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T04:11:49.681Z Has data issue: false hasContentIssue false

14C Age Offset in the Mar Piccolo Sea Basin in Taranto (Southern Italy) Estimated on Cerastoderma Glaucum (Poiret, 1789)

Published online by Cambridge University Press:  21 May 2019

Gianluca Quarta*
Affiliation:
CEDAD (Centre for Dating and Diagnostics), Department of Mathematics and Physics “Ennio de Giorgi”, University of Salento, 73100, Lecce, Italy
Paola Fago*
Affiliation:
Environmental Surveys s.r.l., Via Dario Lupo n. 65, 74212, Taranto, Italy
Lucio Calcagnile
Affiliation:
CEDAD (Centre for Dating and Diagnostics), Department of Mathematics and Physics “Ennio de Giorgi”, University of Salento, 73100, Lecce, Italy
Giulia Cipriano
Affiliation:
Department of Biology, University of Bari Aldo Moro, Italy
Marisa D’Elia
Affiliation:
CEDAD (Centre for Dating and Diagnostics), Department of Mathematics and Physics “Ennio de Giorgi”, University of Salento, 73100, Lecce, Italy
Massimo Moretti
Affiliation:
Department of Earth and geo environmental Sciences, University of Bari Aldo Moro, Italy
Giovanni Scardino
Affiliation:
Department of Earth and geo environmental Sciences, University of Bari Aldo Moro, Italy
Eliana Valenzano
Affiliation:
Department of Earth and geo environmental Sciences, University of Bari Aldo Moro, Italy
Giuseppe Mastronuzzi
Affiliation:
Department of Earth and geo environmental Sciences, University of Bari Aldo Moro, Italy

Abstract

The stratigraphic succession of the Mar Piccolo basin (Gulf of Taranto, Southern Italy) is well known in the scientific literature dealing with the last interglacial since its morphological evolution is influenced by sea level changes during Late Pleistocene-Holocene. The local Holocene sea level history is well known thanks to data deriving from peat and ash layers identified in different sediment cores obtained underwater and in coastal areas. Peat sediments are frequently interlayed with muddy-sand beds rich in Cerastoderma glaucum (Poiret, 1789). In the literature of the Mediterranean basin, AMS 14C dating on C. glaucum is widely used also in paleo-environmental reconstruction because this bivalve is considered an useful marker of sea level, though in lagoonal systems, large age offsets have been reported in different areas. Due to the availability of precise chronological and geochronological markers, in order to validate the use of C. glaucum in paleo sea level reconstruction, AMS 14C dating campaign was carried out on this bivalve deriving from several cores drilled in the Mar Piccolo basin and its nearby areas. Nineteen AMS 14C dating analyses carried out on C. glaucum sampled from different sediment cores up to a maximum of 30 m from the seafloor are presented. These results show an inconsistency of the ages in relation to a sea-level rise reconstruction model. The interpretation of the data was performed after the estimation of the local age offset calculated by analyzing six live samples, collected in 2017 in Mar Piccolo and in Croatia, and two samples dated to 1968–1969. The results show that for both the classes of samples (2017 and 1960s) an age offset ranging from 600 to 800 yr can be estimated.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Amorosi, A, Antonioli, F, Bertini, A, Marabini, S, Mastronuzzi, G, Montagna, P, Negri, A, Rossi, V, Scarponi, D, Taviani, M, Angeletti, L, Piva, A, Vai, GB. 2014. The middle-upper Pleistocene Fronte section (Taranto, Italy): an exceptionally preserved marine record of the last interglacial. Global and Planetary Change 119:2338.CrossRefGoogle Scholar
Antonioli, F, Ferranti, L, Fontana, A, Amorosi, A, Bondesan, A, Braitenberg, C, Dutton, A, Fontolan, G, Furlani, S, Lambeck, K, Mastronuzzi, G, Monaco, C, Spada, G, Stocchi, P. 2009. Holocene relative sea-level changes and tectonic movements along the Italian coastline. Quaternary International 206:102133.10.1016/j.quaint.2008.11.008CrossRefGoogle Scholar
Ayache, M, Dutay, JC, Mouchet, A, Tisnérat-Laborde, N, Montagna, P, Tanhua, T, Siani, G, Jean-Baptiste, P. 2017. High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea. Biogeosciences 14:11971213.CrossRefGoogle Scholar
Boyden, CR. 1971. A comparative study of the reproductive cycles of the cockles Cerastoderma edule and C. Glaucum. Journal of the Marine Biological Association of the United Kingdom 51:605622.10.1017/S0025315400014995CrossRefGoogle Scholar
Boyden, CR. 1972. The behaviour, survival and respiration of the cockles Cerastoderma edule and C. Glaucum in air. Journal of the Marine Biological Association of the United Kingdom 52:661680.10.1017/S0025315400021640CrossRefGoogle Scholar
Cafaro, F, Cotecchia, F, Lenti, V, Pagliarulo, R. 2013. Interpretation and modelling of the subsidence at the archaeologicalsite of Sybaris (Southern Italy). In: Bilotta, E, Flora, A, Lirer, S, Viggiani, C, editors. Geotechnical engineering for the preservation of monuments and historic sites. Boca Raton (FL): CRC Press. p. 199206.10.1201/b14895-23CrossRefGoogle Scholar
Calcagnile, L, Quarta, G, D’Elia, M, Rizzo, A, Gottdang, A, Klein, M, Mous, DJW. 2004. A new accelerator mass spectrometry facility in Lecce, Italy. Nuclear Instruments and Methods in Physics Research 223–224:1620.10.1016/j.nimb.2004.04.007CrossRefGoogle Scholar
Calcagnile, L, Quarta, G, D’Elia, M. 2005. High resolution accelerator-based mass spectrometry: precision, accuracy and background. Applied Radiation and Isotopes 62(4): 623629.CrossRefGoogle ScholarPubMed
Carboni, MG, Bergamin, L, Di Bella, L, Esu, D, Pisegna Cerone, E, Antonioli, F, Verrubbi, V. 2010. Palaeoenvironmental reconstruction of late quaternary foraminifera and molluscs from the ENEA borehole (Versilian plain, Tuscany, Italy). Quaternary Research 74:265276.CrossRefGoogle Scholar
Coularis, C, Tisnérat-Laborde, N, Pastor, L, Siclet, F, Fontugne, M. 2016. Temporal and spatial variations of freshwater reservoir ages in the Loire river watershed. Radiocarbon 58(3):549563.CrossRefGoogle Scholar
De Pascalis, F, Petrizzo, A, Ghezzo, M, Lorenzetti, G, Manfè, G, Alabiso, G, Zaggia, L. 2016. Estuarine circulation in the Taranto seas. Environmental Science Pollution Research 23:1251512534.10.1007/s11356-015-5389-3CrossRefGoogle Scholar
Di Rita, F, Simone, O, Caldara, M, Gehreles, RW, Magri, D. 2011. Holocene environmental changes in the coastal Tavoliere Plain (Apulia, southern Italy): a multiproxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology 310:139151.10.1016/j.palaeo.2011.06.012CrossRefGoogle Scholar
Fernandes, R, Bergemann, S, Hartz, S, Grootes, PM, Nadeau, MJ, Melzner, F, Rakowski, A, Hüls, M. 2012. Mussel with meat: bivalve tissue-shell radiocarbon ages differences and archaeological implications. Radiocarbon 54(3–4):953965.CrossRefGoogle Scholar
Ferranti, L, Antonioli, F, Mauz, B, Amorosi, A, Dai Pra, G, Mastronuzzi, G, Monaco, C, Orrù, P, Pappalardo, M, Radtke, U, Renda, P, Romano, P, Sansò, P, Verrubbi, V. 2006. Markers of the last interglacial sea level high stand along the coast of Italy: tectonic implications. Quaternary International 145–146:3054.CrossRefGoogle Scholar
Ferranti, L, Pagliarulo, R, Antonioli, F, Randisi, A. 2011. “Punishment for the sinner”: Holocene episodic subsidence and steady tectonic motion at ancient Sybaris (Calabria, Southern Italy). Quaternary International 232:5670.CrossRefGoogle Scholar
Gravina, MF, Ardizzone, GD, Scaletta, F,Chimenz, C. 1989. Descrptive analysis and classification of benthic communities in some Mediterranean coastal lagoons (central Italy). Marine Ecology 10(2):141166.10.1111/j.1439-0485.1989.tb00071.xCrossRefGoogle Scholar
Hammer, S, Levin, I. 2017. Monthly mean atmospheric Δ14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016. heiDATA V2. Available from: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/10100Google Scholar
Kandeel, EK, Saad, ZM, Afaf, MM, Marwa, EA. 2017. Population dynamics of the cockle cerastoderma glaucum. A comparison between Lake Qarun and Lake Timsah, Egypt. Turkish Journal of Fisheries and Acquatic Sciences 17:945958.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater reservoir offsets: a cautionary tale. Journal of Archaeological Science 39:13061316.10.1016/j.jas.2011.12.025CrossRefGoogle Scholar
Krzyminska, J. 1993. The distribution of Cerastoderma glaucum (Poiret), Macoma balthica (Linnaeus), Mya arenaria (Linnaeus) and Mytilus edulis (Linnaeus), in Holocene bottom sediements of the southern Baltic Sea. Scripta Geologica – Special Issues 2:269273.Google Scholar
Lambeck, K, Antonioli, F, Anzidei, M, Ferranti, L, Leoni, G, Scicchitano, G, Silenzi, S. 2011. Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary International 232:250257.CrossRefGoogle Scholar
Lambeck, K, Antonioli, F, Purcell, A, Silenzi, S. 2004. Sea-level change along the Italian coast for the past 10, 000 yr. Quaternary Science Reviews 23:15671598.10.1016/j.quascirev.2004.02.009CrossRefGoogle Scholar
Lambeck, K, Anzidei, M, Antonioli, F, Benini, A, Verrubbi, V. 2018. Tyrrhenian sea level at 2000 BP: evidence from Roman age fish tanks and their geological calibration. Rendiconti Lincei 29:6980.10.1007/s12210-018-0715-6CrossRefGoogle Scholar
Lisco, S, Corselli, C, De Giosa, F, Mastronuzzi, G, Moretti, M, Siniscalchi, A, Marchese, F, Bracchi, V, Tessarolo, C, Tursi, A. 2016. Geology of Mar Piccolo, Taranto (Southern Italy): the physical basis of remediation of a polluted marine area. Journal of Maps 12:173180.10.1080/17445647.2014.999136CrossRefGoogle Scholar
Macchia, M, D’Elia, M, Quarta, G, Gaballo, V, Braione, E, Maruccio, L, Calcagnile, L, Ciceri, G, Martinotti, V, Wacker, L. 2013. Extraction of dissolved inorganic carbon (DIC) from seawater samples at CEDAD: Results of an intercomparison excercise on samples from Adriatic shallow water. Radiocarbon 55(2–3):579584.10.1017/S0033822200057714CrossRefGoogle Scholar
Mastronuzzi, G, Romaniello, L. 2008. Holocene aeolian morphogenetic phases in Southern Italy: problems in 14C age determinations using terrestrial gastropods. Quaternary International 183:123134.CrossRefGoogle Scholar
Mastronuzzi, G, Sansò, P. 1998. Morfologia e genesi delle Isole Chéradi e del Mar Grande (Taranto, Puglia, Italia). Geografia Fisica e Dinamica Quaternaria 21:131138.Google Scholar
Mastronuzzi, G, Sansò, P. 2003. Quaternary coastal morphology and sea level changes. Field Guide. Puglia 2003, Final Conference– Project IGCP 437 UNESCO - IUGS, Otranto / Taranto– Puglia (Italy) 22–28 September 2003, GI2S Coast– Gruppo Informale di Studi Costieri, Research Publication 5. Taranto: Brizio srl. p. 184.Google Scholar
Mastronuzzi, G, Boccardi, L, Candela, AM, Colella, C, Curci, G, Giletti, F, Milella, M, Pignatelli, C, Piscitelli, A, Ricci, F, Sansò, P. 2013. Il Castello Aragonese di Taranto in 3D nell’evoluzione del paesaggio naturale. Bari: DIGILABS. p. 171.Google Scholar
Mastronuzzi, G, Antonioli, F, Anzidei, M, Auriemma, R, Alfonso, C, Scarano, T. 2017. Evidence of relative sea level rise along the coast of central Apulia (Italy) during late Holocene from maritime archeological indicators. Quaternary International 439:6578.CrossRefGoogle Scholar
Mastronuzzi, G, Antonioli, F, Anzidei, M, Bruckner, H, De Martini, PM, Ferranti, L, Monaco, C, Moretti, M, Pagliarulo, R, Scicchitano, G, Smedile, A, De Giosa, F, Fago, P, Lisco, S, Lo Presti, V, Pignatelli, C, Milella, M, Piscitelli, A, Scardino, G, Spampinato, CR, Valenzano, E. 2018. Crossing Southern Italy: a travelling meeting from Taranto to Siracusa. Taranto - Siracusa (Italy), 16–23 September 2018. Bari: Digilabs s.r.l. p. 108.Google Scholar
Negri, A, Amorosi, A, Antonioli, F, Bertini, A, Florindo, F, Lurcock, PC, Marabini, S, Mastronuzzi, G, Regattieri, E, Rossi, V, Scarponi, D, Taviani, M, Zanchetta, G, Vai, GB. 2015. A potential Global Stratotype Section and Point (GSSP) for the Tarentian stage, upper Pleistocene: work in progress. Quaternary International 383:145157.CrossRefGoogle Scholar
Negri, PM. 2009. An experimental mapping method by means of fossil mollusk faunas: the Holocene Thai paleogulf. Bollettino della Società Paleontologica Italiana 48(1):4150.Google Scholar
Orrù, PE, Mastronuzzi, G, Deiana, G, Pignatelli, C, Piscitelli, A, Solinas, E, Spanu, PG, Zucca, R. 2014. Sea level changes and geoarchaeology between Malfatano Bay and Piscinnì Bay (SW Sardinia) in the last 4 ky. Quaternary International 336:180189.CrossRefGoogle Scholar
Pavlopoulos, K, Triantaphyllou, M, Karkanas, P, Kouli, K, Syrides, G, Vouvalidis, K, Palyvos, N, Tsourou, T. 2009. Paleoenvironmental evolution and prehistoric human environment, in the embayment of Palamari (Skyros Island, Greece) during middle-late Holocene. Quaternary International 216:4153.10.1016/j.quaint.2009.08.015CrossRefGoogle Scholar
Primavera, M, Simone, O, Fiorentino, G,Caldara, M. 2011. The palaeoenviornmental study of the Alimini Piccolo lakes enables a reconstruction of Holocene sea level changes in southeast Italy. The Holocene 21(4):553563.10.1177/0959683610385719CrossRefGoogle Scholar
Quarta, G, Romaniello, L, D’Elia, M, Mastronuzzi, G, Calcagnile, L. 2007. Radiocarbon ages anomalies in pre- and post-bomb land snails from the coastal area of the Mediterranean basin. Radiocarbon 49(2):817826.10.1017/S0033822200042697CrossRefGoogle Scholar
Reimer, P, McCormac, F. 2002. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean Seas. Radiocarbon 44(1):159166CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50, 000 years cal BP. Radiocarbon 55(4):18691887.10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
Romaniello, L, Quarta, G, Mastronuzzi, G, D’Elia, M, Calcagnile, L. 2008. 14C age anomalies in modern land snails shell carbonate from Southern Italy. Quaternary Geochronology 3:6875. doi: 10.1016/j.quageo.2007.01.006.CrossRefGoogle Scholar
Sabatier, P, Dezileau, L, Blanchemanche, P, Siani, G, Condomines, M, Bentaleb, I, Piquès, G. 2010. Holocene variations of radiocarbon reservoir ages in a Mediterranean lagoonal system. Radiocarbon 52(1):91102.10.1017/S0033822200045057CrossRefGoogle Scholar
Scarponi, D, Kowalewski, M. 2004. Stratigraphic paleoecology: bathymetric signatures and sequence overprint of mollusk associations from upper Quaternary sequences of the Po Plain, Italy. Geology 32:989992.10.1130/G20808.1CrossRefGoogle Scholar
Shackleton, NJ. 2000. The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289(5486):18971902.CrossRefGoogle ScholarPubMed
Siani, G, Paterne, M, Arnold, M, Bard, E, Mativier, B, Tisnerat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42(2):271280.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3) 355363.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):11271151.CrossRefGoogle Scholar
Tanhua, T, Alvarez, M, Mintrop, L, McNichol, A, Key, R. 2012. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor MT84_3 Mediterranean Sea Cruise (April 5-April 28, 2011). Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy. doi: 10.3334/CDIAC/OTG.CLIVAR_06MT20110405. http://cdiac.ornl.gov/ftp/oceans/CLIVAR/Met_84_3_Med_Sea/Google Scholar
Tanhua, T, Hainbucher, D, Cardin, V, Alvarez, M, Civitarese, G, McNichol, AP, Key, RM. 2013. Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011. Earth System Science Data 5–2:289294.10.5194/essd-5-289-2013CrossRefGoogle Scholar
Taviani, M, Angeletti, L, Çağatay, MN, Gasperini, L, Polonia, A, Wesselingh, FP. 2014. Sedimentary and faunal signatures of the post glacial marine drowning of the Pontocaspian Gemlik “lake” (Sea of Marmara). Quaternary International 345:1117.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Montagna, P, McCulloch, M, Siani, G, Silenzi, S, Frank, N. 2013. High resolution coral based Δ14C record of surface water process in the western Mediterrenean Sea. Radiocarbon 55(2–3):16171630.10.1017/S0033822200048530CrossRefGoogle Scholar
Valenzano, E, Scardino, G, Cipriano, G, Fago, P, Capolongo, D, De Giosa, F, Lisco, S, Mele, D, Moretti, M, Mastronuzzi, G. 2018a. Holocene morpho-sedimentary evolution of the Mar Piccolo Basin (Taranto, Southern Italy). Geografia Fisica e Dinamica Quaternaria 41:119135.Google Scholar
Valenzano, E, D’Onghia, FM, De Giosa, F, Demonte, P. 2018b. Morfologia delle sorgenti sottomarine dell’area di Taranto, mar Ionio, Inventario ad ampia scala delle emissioni fluide sommerse. Memorie Descrittive della Carta Geologica d’Italia (accepted).Google Scholar
Zoppi, U, Albani, A, Ammerman, AJ, Hua, Q, Lawson, EM, Serandrei Barbero, R. 2001. Preliminary estimate of the reservoir age in the Lagoon of Venice. Radiocarbon 43(2A):489494.CrossRefGoogle Scholar
Zuffianò, LE, Basso, A, Casarano, D, Dragone, V, Limoni, PP, Romanazzi, A, Santaloia, F, Polemio, M. 2015. Coastal hydrogeological system of Mar Piccolo (Taranto, Italy). Environmental Science and Pollution Research 23(13):113.Google Scholar