Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T17:17:40.690Z Has data issue: false hasContentIssue false

Abrupt Increase of Radiocarbon Concentration in 660 BC in Tree Rings from Grabie Near Kraków (SE Poland)

Published online by Cambridge University Press:  21 May 2019

Andrzej Rakowski*
Affiliation:
Institute of Physics - Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
Marek Krąpiec
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
Matthias Huels
Affiliation:
Leibniz-Laboratory for Radiometric Dating and Isotope Research, University Kiel, Max-Eyth-Str. 11-13, 24118 Kiel, Germany
Jacek Pawlyta
Affiliation:
Institute of Physics - Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
Christian Hamann
Affiliation:
Leibniz-Laboratory for Radiometric Dating and Isotope Research, University Kiel, Max-Eyth-Str. 11-13, 24118 Kiel, Germany
Damian Wiktorowski
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
*
*Corresponding author. Email: [email protected].

Abstract

Miyake et al. (2012, 2013, 2014) described a sudden increase of radiocarbon (14C) concentration in annual tree rings of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) between AD 774 and 775 and between AD 993 and 994. In both analyzed periods, the sudden increase was observed almost in a single year. The increase in the 14C content was about 12‰ in the period AD 774–775 (Miyake et al. 2012) and about 11.3‰ in the period AD 993–994 (Miyake et al. 2013, 2014; Fogtmann-Schultz et al. 2017; Rakowski et al. 2018). A similar increase was observed in 660 BC, with a peak height of about 10‰ (Park et al. 2017). Single-year samples of dendrochronologically dated tree rings of deciduous oak (Quercus robur) from Grabie, a village near Krakow (SE Poland), spanning the years 670–652 BC, were collected and their 14C content was measured using an AMS technique. The results clearly show a rapid increase in the 14C concentration in tree rings around 660 BC similar to this observed in Park et al. (2017).

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Baillie, MGL, Pilcher, JR. 1973. A simple crossdating program for tree-ring research. Tree-Ring Bulletin 33:714.Google Scholar
Boettger, T, Haupt, M, Knöller, K, Weise, SM, Waterhouse, JS, Rinne, KT, Loader, NJ, Sonninen, E, Jungner, H, Masson-Delmotte, V, Stievenard, M, Guillemin, M-T, Pierre, M, Pazdur, A, Leuenberger, M, Flot, M, Saurer, M, Reynolds, CE, Helle, G, Schleser, GH. 2007. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Analytical Chemistry 79:46034612. doi: 10.1021/ac0700023CrossRefGoogle ScholarPubMed
Büntgen, U, Wacker, L, Galván, JD, Arnold, S, Arseneault, D, Baillie, M, Beer, J, Bernabei, M, Bleicher, N, Boswijk, G, et al. 2018. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Commununications 9(1):3605. doi: 10.1038/s4167-018-06036-0.CrossRefGoogle ScholarPubMed
Calisto, M, Verronen, PT, Rozanov, E, Peter, T. 2012. Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. Atmos. Chem. Phys. 12:86798686.CrossRefGoogle Scholar
Castagnoli, G, Lal, D. 1980. Solar modulation effects in terrestrial production of carbon-14. Radiocarbon 22:133158.CrossRefGoogle Scholar
Coplen, TB., et al. 2006. New guidelines for δ13C measurements. Anal. Chem. 78:24392441.CrossRefGoogle ScholarPubMed
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physics Research B 268(7–8):867870.CrossRefGoogle Scholar
Clauer, CR, Siscoe, G, editors. 2006. The great historical geomagnetic stor of 1859: a modern look. Adv. Spec. Res. 38:115388.Google Scholar
Coplen, TB, Brand, WA, Gehre, M, Gröning, M, Meijer, HAJ, Toman, B, Verkouteren, RM, 2006. New guidelines for δ13C measurements. Analytical Chemistry 78:24392441. doi: 10.1021/ac052027cCrossRefGoogle ScholarPubMed
Eckstein, D, Bauch, J, 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230250.CrossRefGoogle Scholar
Fogtmann-Schulz, A, Ostbo, SM, Nielsen, SGB, Olsen, J, Karoff, C, Knudsen, MF 2017. Cosmic ray event in 994 CE recorded in radiocarbon from Danish oak. Geophysical Research Letters 44(16):86218628.CrossRefGoogle Scholar
Green, JW. 1963. Methods of carbohydrate chemistry. In: Whistler, RL, editor. Methods in carbohydrate chemistry. New York: Academic Press. p 921.Google Scholar
Güttler, D, Adolphi, F, Beer, J, Bleicher, N, Boswijk, G, Christl, M, Hogg, A, Palmer, J, Vockenhuber, C, Wacker, L, Wunder, J. 2015. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth and Planetary Science Letters 411:290297.CrossRefGoogle Scholar
Holmes, RL, 1999. Users manual for program COFECHA. Tucson (AZ): University of Arizona.Google Scholar
IAEA. 2014. Materials with known 2H, 13C, 15N and 18O isotopic composition, IAEA-CH-3 cellulose; [accessed 2014 Apr 24]. http://nucleus.iaea.org/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/2H13C15Nand18O/IAEA-CH-3.htm.Google Scholar
IntCal13 Data Sets. 2013. [accessed 2018 Dec 23]. http://intcal.qub.ac.uk/intcal13/.Google Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophysical Research Letters 41(8):3004–10CrossRefGoogle Scholar
Jull, AJT, Panyushkina, I, Miyake, F, Masuda, K, Nakamura, T, Mitsutani, T, Lange, TE, Cruz, R, Baisan, C, Janovics, R, Varga, T, Molnar, M. 2018. More rapid 14C excursions in the tree-ring record: A record of different kind of solar activity at about 800 BC? Radiocarbon 60(4):12371248.CrossRefGoogle Scholar
Kovaltsov, GA, Mishev, A, Usoskin, IG. 2012. A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth and Planetary Science Letters 337–338:114120.Google Scholar
Krawczyk, A and Krąpiec, M, 1995. Dendrochronologiczna baza danych. Materiały II Krajowej Konferencji: Komputerowe wspomaganie badań naukowych (Dendrochronological database. Proceedings of the Second Polish Conference on Computer Assistance to Scientific Research). Wrocław: 247–52. In Polish.Google Scholar
Krąpiec, M, 2001. Holocene dendrochronological standards for subfossil oaks from the area of Southern Poland. Studia Quaternaria 18: 4763.Google Scholar
Krąpiec, M, Rakowski, AZ, Huels, M, Wiktorowski, D, Hamann, C. 2018. A new graphitization system for radiocarbon dating with AMS on the dendrochronological laboratory at AGH-UST Kraków. Radiocarbon 60(4):10911100. doi: 10.1017/rde.2018.60.CrossRefGoogle Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, Aldahan, A, Beer, J, McConnell, JR, Possnert, G, Sigl, M, Svensson, A, Synal, H-A, Welten, KC, Woodruff, TE. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6: 8611.CrossRefGoogle ScholarPubMed
Michczyńska, DJ, Krapiec, M, Michczyński, A, Pawlyta, J, Goslar, T, Nawrocka, N, Piotrowska, N, Szychowska-Krąpiec, E, Waliszewska, B, Zborowska, M. 2018. Different pretreament methods for 14C dating of Younger Dryas and Allerød pine wood (Pinus sylvestris L.). Quaternary Geochronology 48:3844.CrossRefGoogle Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402):240242.CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Commununications 4:1748. doi: 10.1038/ncomms2873.CrossRefGoogle ScholarPubMed
Miyake, F, Masuda, K, Hakozaki, M, Nakamura, T, Tokanai, F, Kato, K, Kimura, K, Mitsutani, T. 2014. Verification of the cosmic-ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56(3):11841194.CrossRefGoogle Scholar
Miyake, F, Jull, AJT, Panyushkina, IP, Wacker, L, Salzer, M, Baisan, CH, Lange, T, Cruz, R, Masuda, K, Nakamura, T. 2017. Lagrge 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America 114(5):881884. doi: 10.1073/pnas.1613144114.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239246.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM. 2013. Calculation of the compounded uncertainty of 14C AMS measurements. Nuclear Instuments and Methods in Physics Research 294:420425.CrossRefGoogle Scholar
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4):11471156.CrossRefGoogle Scholar
Pavlov, A, Blinov, AV, Konstantinov, AN, Ostryakov, VN, Vasilyev, GI, Vdovina, MA, Volkov, PA. 2013. AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Mon. Not. R. Astron. Soc. 435(4):28782884.CrossRefGoogle Scholar
Peristykh, AN, Damon, PE. 2003. Persistence of the Gleissberg 88-year solar cycle over the last ∼12, 000 years: evidence from cosmogenic isotopes. Journal of Geophysical Research: Space Physics 108(A1): 1003. doi: 10.1029/2002JA009390.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, WJ, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50, 000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Rakowski, AZ., Krapiec, M, Huels, M, Pawlyta, J., Dreves, A, Meadows, J. 2015. Increase of radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 774–775. Nuclear Instruments and Methods in Physics Research B 351:564568.CrossRefGoogle Scholar
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Boudin, M. 2018. Increase in radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 993–994. Radiocarbon 60(4):12491258. doi: 10.101/rdc.2018.74CrossRefGoogle Scholar
Rinn, F. 2005. TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. User reference. Heidelberg.Google Scholar
Rogers, KB, Mikaloff-Flecher, SE, Bianchi, D, Beaulieu, C, Galbraith, ED, Gnannadesikan, A, Hogg, AG, Iudicone, D, Lintner, BR, Naegler, T, Reimer, PJ, Sarmiento, JL, Slater, RD. 2011. Interhemispheric gradient of atmospheric radiocarbon revels natural variability of Southern Ocean wind. Climate of the Past 7:11231138.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.CrossRefGoogle Scholar
Usoskin, IG, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltsov, GA, Solanki, S, Wacker, L. 2013. The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 55: L3. doi: 10.1051/0004-6361/201321080.CrossRefGoogle Scholar
Usoskin, IG. 2017. A history of solar activity over millennia. Living Rev Sol Phys 14:3. doi: 10.1007/s41116-017-0006-9CrossRefGoogle Scholar
Wang, FY, Yu, H, Zou, YC, Dai, ZG, Cheng, KS. 2017. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nature Communications. doi: 10.1038/s41467-017-01698-8.Google Scholar
Wojdyr, M. 2010. Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography 43:11261128. 10.1107/S0021889810030499CrossRefGoogle Scholar