Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T03:45:21.920Z Has data issue: false hasContentIssue false

A 40,000-Year Varve Chronology from Lake Suigetsu, Japan: Extension of the 14C Calibration Curve

Published online by Cambridge University Press:  18 July 2016

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A sequence of annually laminated sediments is a potential tool for calibrating the radiocarbon time scale beyond the range of the absolute tree-ring calibration (11 ka). We performed accelerator mass spectrometric (AMS) 14C measurements on >250 terrestrial macrofossil samples from a 40,000-yr varve sequence from Lake Suigetsu, Japan. The results yield the first calibration curve for the total range of the 14C dating method.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Bard, E., Arnold, M., Fairbanks, R. G. and Hamelin, B. 1993 230Th-234U and 14C ages obtained by mass spectrometry on corals. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 191199.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990 Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados Corals. Nature 345: 405410.Google Scholar
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T. L., Wohlfarth, B., Hammer, C. U. and Spurk, M. 1996 Synchronised terrestrial-atmospheric deglacial records around the North Atlantic. Science 214: 11551160.Google Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. L., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in Younger Dryas, documented with 230Th ages of corals. Science 260: 962967.CrossRefGoogle ScholarPubMed
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, M. F., Ralska-Jasiewiczowa, M., Rózanski, K., Tisnerat, N., Walanus, A., Wicik, B. and Wieckowski, K. 1995 High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377: 414417.Google Scholar
Goslar, T., Arnold, M. and Tisnerat-Laborde, N. (ms.) An updated synchronization of the Lake Gościąż varve chronology with the German pine and oak chronologies. In preparation.Google Scholar
Gottdang, A., Mous, D. J. W. and van der Plicht, J. 1995 The HVEE 14C system at Groningen. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 649656.Google Scholar
Kitagawa, H., Fukusawa, H., Nakamura, T., Okamura, M., Takemura, K., Hayashida, A. and Yasuda, Y. 1995 AMS 14C dating of varved sediments from Lake Suigetsu, central Japan and atmospheric 14C change during the late Pleistocene. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 371378.CrossRefGoogle Scholar
Kitagawa, H. and van der Plicht, J. 1997 Enrichment of sub-milligram size carbon samples. Nuclear Instruments and Methods in Physics Research B123: 218220.CrossRefGoogle Scholar
Kitagawa, H. and van der Plicht, J. 1998 Atmospheric radiocarbon for the complete 14C dating range: Late glacial fluctuations and cosmogenic isotope production. Science 279: 11871190.Google Scholar
Kromer, B., Ambers, J., Baillie, M. G. L., Damon, P. E., Hesshaimer, V., Hofmann, J., Joris, O., Levin, I., Manning, W., McCormac, F. G., van der Plicht, J., Spurk, M., Stuiver, M. and Weninger, B. 1996 Report: Summary of the workshop “Aspects of high-precision radiocarbon calibration”. Radiocarbon 38(3): 607610.Google Scholar
Kromer, B. and Becker, B. 1993 German oak and pine 14C calibration, 7200–9439 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 125135.Google Scholar
Laj, C., Mazaud, A. and Duplessy, J.-C. 1996 Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50 kyr. Geophysical Research Letters 23(16): 20452048.CrossRefGoogle Scholar
Mook, W. G. and Streurman, H. J. 1983 Physical and chemical aspects of radiocarbon dating. In Mook, W. G. and Waterbolk, H. T., eds., Proceedings of the 1st International Symposium, 14 C and Archaeology. PACT 8. Strasbourg: Conseil de l'Europe, Assemblée parlementaire: 3155.Google Scholar
Takemura, K., Kitagawa, H., Hayashida, A. and Yasuda, Y. 1994 Sedimentary facies and chronology of core samples from Lake Mikata, Lake Suigetsu and Kurota Lowland, central Japan – sedimentary environment in Mikata Lowland since the last interglacial time. Journal of Geography 103(3): 233242.CrossRefGoogle Scholar
van der Plicht, J., Aerts, A., Wijma, S. and Zondervan, A. 1995 First Results from the Groningen AMS facility. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 657661.Google Scholar
Voelker, A., Sarnthein, H., Grootes, P., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., and Schleicher, M. 1998 Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: Implications for 14C calibration beyond 25 ka BP. Radiocarbon, this issue.Google Scholar
Wijma, S. and van der Plicht, J. 1997 The Groningen AMS tandetron. Nuclear Instruments and Methods in Physics Research B123: 218220.Google Scholar
Wohlfarth, B., Björck, S., Possnert, G., Lemdahl, G., Brunnberg, L., Ising, L., Olsson, S. and Svensson, N.-O. 1993 AMS dating Swedish varved clays of the last glacial/interglacial transition and the potential difficulties of calibrating Late Weichselian ‘absolute’ chronologies. Boreas 22: 113128.Google Scholar