Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T02:02:29.220Z Has data issue: false hasContentIssue false

14C Profiles in the Central Weddell Sea

Published online by Cambridge University Press:  18 July 2016

Peter Schlosser
Affiliation:
Institut für Umweltphysik der Universität Heidelberg Im Neuenheimer Feld 366, D-69 Heidelberg, FRG
Bernd Kromer
Affiliation:
Institut für Umweltphysik der Universität Heidelberg Im Neuenheimer Feld 366, D-69 Heidelberg, FRG
Reinhold Bayer
Affiliation:
Institut für Umweltphysik der Universität Heidelberg Im Neuenheimer Feld 366, D-69 Heidelberg, FRG
K O Münnich
Affiliation:
Institut für Umweltphysik der Universität Heidelberg Im Neuenheimer Feld 366, D-69 Heidelberg, FRG
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

14C data from stations in the central Weddell Sea are presented and discussed using additional parameters (potential temperature, salinity and 3He). The low 14C concentrations of the surface water (≈-90‰) are explained by suppressed gas exchange due to ice cover during the winter and rapid turnover of the surface layer caused by entrainment of Warm Deep Water (WDW) with low 14C concentrations. A simple time-dependent balance calculated for the Surface Water (SW) and the underlying Winter Water (WW) can reproduce the 14C concentrations observed in these layers for 1985. The pre-bomb 14C concentrations are estimated at ≈-130‰ for SW and −140‰ for WW. A strong deviation of the SW 14C concentration observed in 1973 from the calculated value suggest a change in surface circulation and/or air/sea exchange during the period before the Weddell Polynya in 1974. The observed 14C concentrations of the Weddell Sea Bottom Water (WSBW; −135 to −150‰) are only slightly higher than those of the WDW showing that the uptake of bomb 14C in the Weddell Sea is limited. The 14C profiles show a minimum at intermediate depths (≈ 1500m) which is caused by radioactive decay and/or penetration of bomb 14C from shallow and deep layers (WDW and WSBW) into intermediate layers.

Type
II. Carbon Cycle in the Environment
Copyright
Copyright © The American Journal of Science 

References

Bonani, G, Beer, J, Hofmann, H, Synal, HA, Suter, M, Wölfli, W, Pfleiderer, C, Kromer, B, Junghans, C and Münnich, KO, 1987, Fractionation, precision and accuracy in 14C and 13C measurements: Nuclear Instruments & Methods, v B29, p 8790.CrossRefGoogle Scholar
Brennecke, W, 1921, Die ozeanographischen Arbeiten der Deutschen Antarktischen Expedition 1911–1912: Archiv Deutschen Seewarte, v 39, 214 p.Google Scholar
Broecker, WS, 1981, Geochemical tracers and ocean circulation, in Warren, BA & Wunsch, C, eds, Evolution of physical oceanography (Scientific surveys in honor of Henry Stommel): Cambridge, Massachusetts, MIT Press, p 434460.Google Scholar
Broecker, WS and Peng, TH, 1982, Tracers in the sea: Palisades, New York, Eldigio Press, 690 p.Google Scholar
Broecker, WS, Peng, TH, Östlund, HG and Stuiver, M, 1985, The distribution of bomb radiocarbon in the ocean: Jour Geophys Research, v 90, p 69536970.CrossRefGoogle Scholar
Carmack, EC and Foster, TD, 1975a, On the flow of water out of the Weddell Sea: Deep-Sea Research, v 22, p 711724.Google Scholar
Carmack, EC and Foster, TD, 1975b, Circulation and distribution of oceanographic properties near the Filchner Ice Shelf: Deep-Sea Research, v 22, p 7790.Google Scholar
Casarini, PM and Massom, R, eds, 1987, Winter Weddell Sea Project sea ice observations: Leg 1: June-September 1986: Rept, Scott Polar Research Inst. Google Scholar
Deacon, GER, 1937, The hydrography of the Southern Ocean: Discovery Repts, v 15, 124 p.Google Scholar
Foldvik, A, Gammelsrød, T and Tørresen, T, 1985a, Physical oceanography studies in the Weddell Sea during the Norwegian Antarctic Research Expedition 1978/79: Polar Research, v 3, p 195207.CrossRefGoogle Scholar
Foldvik, A, Gammelsrød, T and Tørresen, T, 1985b, Hydrographic observations from the Weddell Sea during the Norwegian Antarctic Research Expedition 1976/77: Polar Research, v 3, p 177193.CrossRefGoogle Scholar
Foster, TD and Carmack, EC, 1976a, Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea: Deep-Sea Research, v 23, p 301317.Google Scholar
Foster, TD and Carmack, EC, 1976b, Temperature and salinity structure in the Weddell Sea: Jour Phys Oceanog, v 6, p 3644.2.0.CO;2>CrossRefGoogle Scholar
Foster, TD, Foldvik, A and Middleton, JH, 1987, Mixing and bottom water formation in the shelf break region of the southern Weddell Sea: Deep-Sea Research, v 34, p 17711794.CrossRefGoogle Scholar
Gordon, AL, 1974, Varieties and variability of Antarctic Bottom Water, in Processus de formation des eaux océaniques profondes: Colloques Internationaux CNRS no. 215, p 3347.Google Scholar
Gordon, AL, 1982, Weddell Deep Water variability: Jour Marine Research, v 40, p 199217.Google Scholar
Gordon, AL, Chen, CTA and Metcalf, WG, 1984, Winter mixed layer entrainment of Weddell Deep Water: Jour Geophys Research, v 89, p 637640.CrossRefGoogle Scholar
Gordon, AL and Huber, BA, 1984, Thermohaline stratification below the Southern Ocean sea ice: Jour Geophys Research, v 89, p 641648.CrossRefGoogle Scholar
Kromer, B, 1984, Recalibration of Heidelberg 14C laboratory data: Radiocarbon, v 26, no. 1, p 148.CrossRefGoogle Scholar
Kromer, B, Pfleiderer, C, Schlosser, P, Levin, I, Münnich, KO, Bonani, G, Suter, M and Wölfli, W, 1987, AMS 14C measurement of small volume oceanic water samples: experimental procedure and comparison with low-level counting technique: Nuclear Instruments & Methods, v B29, p 302305.CrossRefGoogle Scholar
Kuntz, R (ms), 1980, Bestimmung der Parameter einer Vakuumextraktionsapparatur zur parallelen Aufbereitung ozeanischer C-14 und Kr-85 Proben: Masters thesis, Inst f Umweltphysik, Univ Heidelberg.Google Scholar
Levin, I, Kromer, B, Wagenbach, D and Münnich, KO, 1987, Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica: Tellus, v 39B, p 8995.CrossRefGoogle Scholar
Levin, I, Münnich, KO and Weiss, W, 1980, The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere, in Stuiver, M and Kra, RS, eds, Internatl 14C conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 379391.Google Scholar
Lynch, MCF and Kay, DJ, 1981, Performance of a mass spectrometer for determining low tritium levels from 3He/4He measurements, in Methods of low-level counting and spectrometry: Vienna, IAEA-SM-252/47, p 511523.Google Scholar
Mosby, H, 1934, The waters of the Atlantic Antarctic Ocean: Scientific results of the Norwegian Antarctic Expeditions 1927–1928, v 1, no. 2, 131 p.Google Scholar
Nowlin, WD Jr and Clifford, M, 1982, The kinematic and thermohaline zonation of the Antarctic Circumpolar Current at Drake Passage: Jour Marine Research, v 40, p 481507.Google Scholar
Östlund, HG and Stuiver, M, 1980, GEOSECS Pacific raduicarbon: Radiocarbon, v 22, no. 1, p 2553.CrossRefGoogle Scholar
Rafter, TA and O'Brien, BJ, 1973, 14C measurements in the atmosphere and in the south Pacific ocean – a recalculation of the exchange rates between the atmosphere and the ocean, in Rafter, TA and Grant-Taylor, T, eds, Internatl conf on 14C dating, 8th, Proc: Wellington, New Zealand, Royal Soc New Zealand, p 241267.Google Scholar
Schlosser, P, 1986, Helium: a new tacer in Antarctic oceanography: Nature, v 321, p 233235.CrossRefGoogle Scholar
Schlosser, P, Pfleiderer, C, Kromer, B, Levin, I, Münnich, KO, Bonani, G, Surer, M and Wölfli, W, 1987, Measurement of small volume oceanic 14C samples by accelerator mass spectrometry: Radiocarbon, v 29, no. 3, p 347352.CrossRefGoogle Scholar
Schlosser, P, Roether, W and Rohardt, G, 1987, Helium-3 balance of the upper layers of the northwestern Weddell Sea: Deep-Sea Research, v 34, p 365377.CrossRefGoogle Scholar
Schnack-Schiel, S, ed, 1987, The winter-expedition of RV Polarstern to the Antarctic (ANT V/1–3), Alfred-Wegener Institut für Polar- und Meeresforschung, Bremerhaven, FRG: Repts Polar Research, v 39, 259 p.Google Scholar
Schoch, H, Bruns, M, Münnich, KO and Münnich, M, 1980, A multi counter system for high precision carbon-14 measurements, in Stuiver, M and Kra, RS, eds, Internatl 14C conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 442447.Google Scholar
Schoch, H and Münnich, KO, 1981, Routine performance of a new multi-counter system for high-precision 14C dating, in Methods of low-level counting and spectrometry: Vienna, IAEA, p 361370.Google Scholar
Stuiver, M and Östlund, HG, 1980, GEOSECS Atlantic radiocarbon: Radiocarbon, v 22, no. 1, p 124.CrossRefGoogle Scholar
Stuiver, M and Ostlund, HG, 1983, GEOSECS Indian Ocean and Mediterranean radiocarbon: Radiocarbon, v 25, no. 1, p 129.CrossRefGoogle Scholar
Stuiver, M and Polach, HA, 1977, Discussion: Reporting of 14C data: Radiocarbon, v 19, no. 3, p 355363.CrossRefGoogle Scholar
Warren, BA, 1981, Deep circulation of the World Ocean, in Warren, BA and Wunsch, C, eds, Evolution of physical oceanography (Scientific surveys in honor of Henry Stommel): Cambridge, Massachusetts, MIT Press, p 641.Google Scholar
Weiss, RF, Östlund, HG and Craig, H, 1979, Geochemical studies of the Weddell Sea: Deep-Sea Research, v 26, p 10931120.CrossRefGoogle Scholar