Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T12:42:31.434Z Has data issue: false hasContentIssue false

14C Dating of Bone Using γ-Carboxyglutamic Acid and α-Carboxyglycine (Aminomalonate)

Published online by Cambridge University Press:  18 July 2016

Richard R. Burky
Affiliation:
AMS Research Laboratory, Department of Anthropology, University of California, Riverside, California 92521 USA
Donna L. Kirner
Affiliation:
AMS Research Laboratory, Department of Anthropology, University of California, Riverside, California 92521 USA
R. E. Taylor
Affiliation:
AMS Research Laboratory, Department of Anthropology, University of California, Riverside, California 92521 USA Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521 USA
P. E. Hare
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 USA
John R. Southon
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94551 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon determinations have been obtained on γ-carboxyglutamic acid [Gla] and α-carboxyglycine (aminomalonate) [Am] as well as acid- and base-hydrolyzed total amino acids isolated from a series of fossil bones. As far as we are aware, Am has not been reported previously in fossil bone and neither Gla nor Am 14C values have been measured previously. Interest in Gla, an amino acid found in the non-collagen proteins osteocalcin and matrix Gla-protein (MGP), proceeds from the suggestion that it may be preferentially retained and more resistant to diagenetic contamination affecting 14C values in bones exhibiting low and trace amounts of collagen. Our data do not support these suggestions. The suite of bones examined showed a general tendency for total amino acid and Gla concentrations to decrease in concert. Even for bones retaining significant amounts of collagen, Gla (and Am extracts) can yield 14C values discordant with their expected age and with 14C values obtained on total amino-acid fractions isolated from the same bone sample.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Ajie, H. O., Hauschka, P. V., Kaplan, I. R. and Sobel, H. 1991 Comparison of bone collagen and osteocalcin for determination of radiocarbon ages and paleodietary reconstruction. Earth and Planetary Science Letters 107: 380388.CrossRefGoogle Scholar
Ajie, H. O., Kaplan, I. R., Hauschka, P. V., Kirner, D., Slota, P. J. Jr. and Taylor, R. E. 1992 Radiocarbon dating of bone osteocalcin: Isolating and characterizing a non-collagen protein. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 296305.Google Scholar
Ajie, H. O., Kaplan, I. R., Slota, P. J. Jr. and Taylor, R. E. 1990 AMS radiocarbon dating of bone osteocalcin. Nuclear Instruments and Methods in Physics Research B52: 433437.Google Scholar
Bada, J. L. 1985 Amino acid racemization dating of fossil bones. Annual Review of Earth and Planetary Science 13: 241268.CrossRefGoogle Scholar
Brown, F. H. 1988 Geochronometry. In Tattersall, I., Del-son, E. and van Couvering, J., eds., Encyclopedia of Human Evolution and Prehistory. New York, Garland Publishing: 222225.Google Scholar
Brown, T. A., Nelson, D. E., Vogel, S. J. and Southon, J. R. 1988 Improved collagen extraction by modified Longin method. Radiocarbon 30(2): 171177.Google Scholar
Burky, R. R. 1996 (ms.) Radiocarbon dating archaeologically significant bone using gamma-carboxyglutamic acid (Gla) and alpha-carboxyglycine (aminomalonate). Ph.D. dissertation, University of California, Riverside.Google Scholar
Burky, R. R., Hare, P. E., Hauschka, P. V. and Taylor, R. E. (ms.) The occurrence of alpha-carboxyglycine (aminomalonate) in fossil bones. In preparation.Google Scholar
DeNiro, M. J. and Weiner, S. 1988 Chemical, enzymatic and spectroscopic characterization of “collagen” and other organic fractions from prehistoric bones. Geochimica et Cosmochimica Acta 52: 21972206.Google Scholar
Gillespie, R. 1989 Fundamentals of bone degradation chemistry: Collagen is not “the way.” In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 239246.Google Scholar
Gundberg, C. M., Hauschka, P. V., Lian, J. B. and Gallop, P. M. 1984 Osteocalcin: Isolation, characterization and detection. Methods in Enzymology 107: 516544.Google Scholar
Hare, P. E. 1980 Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In Behrensmeyer, A. K. and Hill, A. P., eds., Fossils in the Making. Chicago, University of Chicago Press: 208219.Google Scholar
Hauschka, P. V. 1977 Quantitative determination of gamma-carboxyglutamic acid in proteins. Analytical Biochemistry 80: 212223.CrossRefGoogle ScholarPubMed
Hauschka, P. V. 1980 Osteocalcin: A specific protein of bone with potential for fossil dating. In Hare, P. E., Hoering, T. C. and King, K., eds., Biogeochemistry of Amino Acids. New York, Wiley: 7582.Google Scholar
Hauschka, P. V. and Gallop, P. M. 1977 Purification and calcium-binding properties of osteocalcin, the gamma carboxyglutamate-containing protein of bone. In Wasserman, R. H., ed., Calcium Binding Proteins and Calcium Functions. Amsterdam, Elsevier/North Holland: 338347.Google Scholar
Hauschka, P. V., Henson, E. B. and Gallop, P. M. 1980 Quantitative analysis and comparative decarboxylation of amionalonic acid, beta-carboxyaspartic acid, and gamma-carboxyglutamic acid. Analytical Biochemistry 108: 5763.CrossRefGoogle ScholarPubMed
Hauschka, P. V., Lian, J. B., Cole, D. E. C. and Gundberg, C. M. 1989 Osteocalcin and matrix Gla protein: Vitamin K–dependent proteins in bone. Physiological Review 69: 9901047.CrossRefGoogle ScholarPubMed
Hauschka, P. V., Lian, J. B. and Gallop, P. M. 1975 Direct identification of the calcium-binding amino acid gamma-carboxylutamate in mineralized tissue. Proceedings of the National Academy of Science (USA) 72: 39253929.Google Scholar
Hauschka, P. V. and Wiams, F. H. Jr. 1989 Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. The Anatomical Record 224: 180188.CrossRefGoogle ScholarPubMed
Hedges, R. E. M and Law, I. A. 1989 The radiocarbon dating of bone. Applied Geochemistry 4: 249253.Google Scholar
King, K. Jr. 1978 γ-carboxyglutamic acid in fossil bones and its significance for amino acid dating. Nature 273: 4143.Google Scholar
King, K. Jr. 1980 γ-carboxyglutamic acid in fossil bone. In Hare, P. E., Hoering, T. C., and King, K. Jr., eds., Biogeochemistry of Amino Acids. New York, John Wiley & Sons: 491501.Google Scholar
Kirner, D. L, Burky, R., Taylor, R. E. and Southon, J. R. 1997 Radiocarbon dating organic residues at the microgram level. Nuclear Instruments and Methods in Physics Research B123: 214217.Google Scholar
Kirner, D. L., Southon, J. R., Hare, P. E. and Taylor, R. E. 1996 Accelerator mass spectrometry radiocarbon measurement of submilligram samples. In Orna, A. V., ed., Archaeological Chemistry: Organic, Inorganic, and Biochemical Analysis. Washington, D.C., American Chemical Society: 434442.Google Scholar
Kirner, D. L., Taylor, R. E. and Southon, J. R. 1995 Reduction in backgrounds of microsamples for AMS 14C dating. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 697704.CrossRefGoogle Scholar
Libby, W. F. 1952 Radiocarbon Dating. Chicago, University of Chicago Press: 124 p.Google Scholar
Long, A., Wilson, A. T., Ernst, R. D., Gore, B. H. and Hare, P. E. 1989 AMS radiocarbon dating of bones at Arizona. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 231238.Google Scholar
Masters, P. M. 1987 Preferential preservation of noncollagenous protein during bone diagenesis: Implications for chronometric and stable isotopic measurements. Geochimica et Cosmochimica Acta 51: 32093214.Google Scholar
Nelson, D. E., Morland, R. E., Vogel, J. S., Southon, J. R. and Harrington, C. R. 1986 New radiocarbon dates on artifacts from the northern Yukon Territory: Holocene not upper Pleistocene in age. Science 232: 749751.Google Scholar
Newesley, H. 1989 Fossil bone apatite. Applied Geochemistry 4(3): 233245.Google Scholar
Poser, J. W., Esch, F., Ling, N. C. and Price, P. A. 1980 Isolation and sequence of the vitamin K-dependent protein from human bone. Journal of Biological Chemistry 225: 86858691.Google Scholar
Poser, J. W. and Price, P. A. 1979 A method for decarboxylation of gamma-carboxyglutamic acid in proteins. Journal of Biological Chemistry 254: 431436.Google Scholar
Stafford, T. W. Jr., Brendel, D. and Duhamel, R. C. 1988 Radiocarbon, 13C, and 15N analysis of fossil bone: Removal of humates with XAD-2 resin. Geochimica et Cosmochimica Acta 52: 22572267.Google Scholar
Stafford, T. W. Jr., Jull, A. J. T., Brendel, K., Duhamel, R. C. and Donahue, D. 1987 Study of bone radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for radioisotope analysis. Radiocarbon 29: 2444.Google Scholar
Taylor, R. E. 1987 Radiocarbon Dating: An Archaeological Perspective. San Diego, Academic Press: 212 p.Google Scholar
Taylor, R. E. 1992 Radiocarbon dating of bone: To collagen and beyond. In Taylor, R. E., Kra, R. and Long, A., eds, Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 375402.Google Scholar
Termine, J. D. 1988 Non-collagen proteins in bone. In Cell and Molecular Biology of Vertebrate Hard Tissues. New York, John Wiley & Sons: 392 p.Google Scholar
Tuross, N., Behrensmeyer, E. D., Eanes, L. W., Fisher, L. W. and Hare, P. E. 1989 Molecular preservation and crystallographic alteration in a weathering sequence of wildebeest bones. Applied Geochemistry 4(3): 261270.CrossRefGoogle Scholar
Ulrich, M. M. W., Perizonius, W. R. K., Spoor, C. F., Sandberg, P. and Vermeer, C. 1987 Extraction of osteocalcin from fossil bones and teeth. Biochemical and Biophysical Research Communication 49: 712719.Google Scholar
van Klinken, G. J. and Mook, W. G. 1990 Preparative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen. Radiocarbon 32(2): 155164.Google Scholar
Vogel, J. S., Nelson, D. E. and Southon, J. R. 1987 14C background levels in an accelerator mass spectrometry system. Radiocarbon 29(3): 323333.Google Scholar
Weiner, S. and Price, P. A. 1986 Disaggregation of bone into crystals. Calcified Tissue International 39: 365375.Google Scholar