Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T14:27:34.120Z Has data issue: false hasContentIssue false

14C DATES AND STABLE ISOTOPE ECOLOGY OF MARINE VERTEBRATES IN THE LATE PLEISTOCENE-EARLY HOLOCENE CHAMPLAIN SEA

Published online by Cambridge University Press:  09 June 2021

Robert S Feranec*
Affiliation:
New York State Museum, 3140 Cultural Education Center, Albany, NY12230, USA
Mario E Cournoyer
Affiliation:
Musée de paléontologie et de l’évolution, 541 de la Congrégation, Montréal, QCH3K 2J1, Canada
Andrew L Kozlowski
Affiliation:
New York State Museum, 3140 Cultural Education Center, Albany, NY12230, USA
*
*Corresponding author. Email: [email protected]

Abstract

The late Pleistocene to early Holocene Champlain Sea provides a unique opportunity to study the development of marine ecosystems in a context of global climatic change. This study presents radiocarbon (14C) dates and stable isotope analyses on 15 vertebrate specimens from Champlain Sea sediments, including the Charlotte Whale, which is Vermont’s State marine fossil. Data are used in an attempt to investigate the timing of colonization and ecological dynamics in this newly formed sea. Using the average marine correction, 14C dates on four specimens likely calibrate prior to or possibly synchronous with the accepted origination date for the Champlain Sea, implying larger marine reservoir effects than the average marine correction in the vertebrate tissues. Without knowing the specific marine reservoir offsets, it is not possible to calculate the timing of colonization or its relation to concurrent climatic change. Observed lower δ13C and δ15N values in walruses, a fin whale, and a right whale support consumption of prey from lower trophic levels such as bivalve mollusks, krill, and copepods. Higher isotopic values in beluga whales and a bird, the thick-billed murre, support consuming fish, such as cod and capelin. These isotopic data show comparable values and relationships as observed in modern arctic marine ecosystems.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agersted, MD, Bode, A, Nielsen, TG. 2014. Trophic position of coexisting krill species: a stable isotope approach. Marine Ecology Progress Series 516:139151.CrossRefGoogle Scholar
Aguilar, A, García-Vernet, R. 2018. Fin Whale: Balaenoptera physalus . In: Würsig, B, Thewissen, JGM, Kovacs, KM, editors. Encyclopedia of marine mammals (third edition). Academic Press. p. 368371.CrossRefGoogle Scholar
Anderson, TW, Levac, E, Lewis, CFM. 2007. Cooling in the Gulf of St. Lawrence and estuary region at 9.7 to 7.2 14C ka (11.2–8.0 cal ka): palynological response to the PBO and 8.2 cal ka cold events, Laurentide Ice Sheet air-mass circulation and enhanced freshwater runoff. Palaeogeography, Palaeoclimatology, Palaeoecology 246(1):75100.CrossRefGoogle Scholar
Beaumont, W, Beverly, R, Southon, J, Taylor, RE. 2010. Bone preparation at the KCCAMS laboratory. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(7):906909.CrossRefGoogle Scholar
Belrose, A. 2015. The Champlain Sea/Lake Champlain transition recorded in the northeast arm of Lake Champlain, USA–Canada. Graduate College Dissertations and Theses.Google Scholar
Born, EW, Rysgaard, S, Ehlmé, G, Sejr, M, Acquarone, M, Levermann, N. 2003. Underwater observations of foraging free-living Atlantic walruses (Odobenus rosmarus rosmarus) and estimates of their food consumption. Polar Biology 26(5):348357.CrossRefGoogle Scholar
Borrell, A, Abad-Oliva, N, Gómez-Campos, E, Giménez, J, Aguilar, A. 2012. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Communications in Mass Spectrometry 26(14):15961602.CrossRefGoogle ScholarPubMed
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.CrossRefGoogle Scholar
Burton, RK, Koch, PL. 1999. Isotopic tracking of foraging and long-distance migration in northeastern Pacific pinnipeds Oecologia 119(4):578585.CrossRefGoogle ScholarPubMed
Calleja, MLl, Kerhervé, P, Bourgeois, S, Kędra, M, Leynaert, A, Devred, E, Babin, M, Morata, N. 2017. Effects of increase glacier discharge on phytoplankton bloom dynamics and pelagic geochemistry in a high Arctic fjord. Progress in Oceanography 159:195210.CrossRefGoogle Scholar
Chapdelaine, C, Richard, PJH. 2017. Middle and Late Paleoindian adaptation to the landscapes of Southeastern Québec. PaleoAmerica 3(4):299312.CrossRefGoogle Scholar
Clementz, MT, Koch, PL. 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129(3):461472.CrossRefGoogle ScholarPubMed
Cournoyer, ME, Chartier, MD, Dubreuil, M, Occhietti, S. 2006. Additions to the Champlain Sea faunal assemblage from Saint-Nicolas, Québec, with remarks on its paleoecology. Canadian Paleontology Conference Proceedings 4:1216.Google Scholar
Cronin, TM, Manley, PL, Brachfeld, S, Manley, TO, Willard, DA, Guilbault, J-P, Rayburn, JA, Thunell, R, Berke, M. 2008. Impacts of post-glacial lake drainage events and revised chronology of the Champlain Sea episode 13–9 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 262(1):4660.CrossRefGoogle Scholar
Dehn, L-A, Sheffield, GG, Follmann, EH, Duffy, LK, Thomas, DL, O’Hara, TM. 2007. Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biology 30(2):167181.CrossRefGoogle Scholar
Dyck, W, Lowdon, JA, Fyles, JG, Blake, W. 1966. Geological Survey of Canada radiocarbon dates V. Radiocarbon 8:96127.CrossRefGoogle Scholar
Dyke, AS, McNeely, RN, Hooper, J. 1996. Marine reservoir corrections for bowhead whale radiocarbon age determinations. Canadian Journal of Earth Sciences 33(12):16281637.CrossRefGoogle Scholar
Dyke, AS, Savelle, JM, Szpak, P, Southon, JR, Howse, L, Desrosiers, PM, Kotar, K. 2019. An assessment of marine reservoir corrections for radiocarbon dates on walrus from the Foxe Basin Region of Arctic Canada. Radiocarbon 61(1):6781.CrossRefGoogle Scholar
Ehleringer, JR, Monson, RK. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24:411439.CrossRefGoogle Scholar
England, J, Dyke, AS, Coulthard, RD, Mcneely, R, Aitken, A. 2013. The exaggerated radiocarbon age of deposit-feeding molluscs in calcareous environments. Boreas 42(2):362373.CrossRefGoogle Scholar
Fay, FH. 1982. Ecology and biology of the Pacific Walrus, Odobenus rosmarus divergens Illiger. North American Fauna 74:1279.CrossRefGoogle Scholar
Fay, FH. 1985. Odobenus rosmarus . Mammalian Species 238:17.CrossRefGoogle Scholar
Feranec, RS, Franzi, DA, Kozlowski, AL. 2014. A new record of ringed seal (Pusa hispida) from the late Pleistocene Champlain Sea and comments on its age and paleoenvironment. Journal of Vertebrate Paleontology 34(1):230235.CrossRefGoogle Scholar
Fry, B, Sherr, EB. 1989. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In: Rundel, PW, Ehleringer, JR, Nagy, KA, editors. Stable isotopes in ecological research. New York: Springer. p. 196229.CrossRefGoogle Scholar
Fry, B, Wainright, SC. 1991. Diatom sources of 13C-rich carbon in marine food webs. Marine Ecology Progress Series 76(2):149157.CrossRefGoogle Scholar
Furze, MFA, Pieńkowski, AJ, Coulthard, RD. 2014. New cetacean ΔR values for Arctic North America and their implications for marine-mammal-based palaeoenvironmental reconstructions. Quaternary Science Reviews 91:218241. doi:10.1016/j.quascirev.2013.08.021.CrossRefGoogle Scholar
Gadd, NR. 1988. Lithofacies relationships in a freshwater-marine transition of the Champlain Sea. In: The Late Quaternary Development of the Champlain Sea basin. p. 83–90.Google Scholar
Hansen, JH, Hedeholm, RB, Sünksen, K, Christensen, JT, Grønkjær, P. 2012. Spatial variability of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios in an Arctic marine food web. Marine Ecology Progress Series 467:4759.CrossRefGoogle Scholar
Harington, CR. 1977. Marine mammals in the Champlain Sea and the Great Lakes. Annals of the New York Academy of Sciences 288(1):508537.CrossRefGoogle Scholar
Harington, CR. 1988. Marine mammals of the Champlain Sea, and the problem of whales in Michigan. In: Gadd NR, editor. The Late Quaternary development of the Champlain Sea Basin. (Geological Association of Canada Special Paper). p. 225–240.Google Scholar
Harington, CR. 2003a. Quaternary Vertebrates of Québec: A Summary. Géographie physique et Quaternaire 57(1):8594.Google Scholar
Harington, CR. 2003b. Annotated Bibliography of Quaternary Vertebrates of Northern North America: With Radiocarbon Dates. University of Toronto Press.Google Scholar
Harington, CR, Lebel, S, Paiement, M, de Vernal, A. 2006. Félix: a Late Pleistocene white whale (Delphinapterus leucas) skeleton from Champlain Sea deposits at Saint-Félix-de-Valois, Québec. Géographie physique et Quaternaire 60(2):183198.Google Scholar
Harington, CR, Sergeant, DE. 1972. Pleistocene ringed seal skeleton from Champlain Sea deposits near Hull, Québec–a reidentification. Canadian Journal of Earth Sciences 9(8):10391051.CrossRefGoogle Scholar
Heaton, TJ, Köhler, P, Butzin, M, Bard, E, Reimer, RW, Austin, WEN, Ramsey, CB, Grootes, PM, Hughen, KA, Kromer, B, et al. 2020. Marine20—The marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62(4):779820.CrossRefGoogle Scholar
Hillaire-Marcel, C. 1988. Isotopic composition (18O, 13C, 14C) of biogenic carbonates in Champlain Sea sediments. In: Gadd NR, editor. The Late Quaternary Development of the Champlain Sea Basin. (Geological Association of Canada Special Paper). p. 177–194.Google Scholar
Hobson, KA. 1993. Trophic relationships among high Arctic seabirds: insights from tissue-dependent stable-isotope models. Marine Ecology Progress Series 95(1/2):718.CrossRefGoogle Scholar
Hobson, KA, Welch, HE. 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series 84(1):918.CrossRefGoogle Scholar
Jay, CV, Fischbach, AS, Kochnev, AA. 2012. Walrus areas of use in the Chukchi Sea during sparse sea ice cover. Marine Ecology Progress Series 468:113.CrossRefGoogle Scholar
Kastelein, RA. 2009. Walrus: Odobenus rosmarus . In: Perrin, WF, Würsig, B, Thewissen, JGM, editors. Encyclopedia of marine mammals. 2nd edition. London: Academic Press. p. 12121217.CrossRefGoogle Scholar
Kenney, RD. 2018. Right whales: Eubalaena glacialis, E. japonica, and E. australis . In: Würsig, B, Thewissen, JGM, Kovacs, KM, editors. Encyclopedia of marine mammals. 3rd edition. Academic Press. p. 817822.CrossRefGoogle Scholar
Koch, PL. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26(1):573613.CrossRefGoogle Scholar
Laverdière, JW. 1950. Baleine fossile de Daveluyville, Québec. Le Naturaliste Canadien 77:271282.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.CrossRefGoogle ScholarPubMed
Lowdon, JA, Blake, WJ. 1981. Radiocarbon dates XXI. Geological Survey of Canada Report No.: GSCAN-P--81-7.Google Scholar
Marcoux, M, McMeans, BC, Fisk, AT, Ferguson, SH. 2012. Composition and temporal variation in the diet of beluga whales, derived from stable isotopes. Marine Ecology Progress Series 471:283291.CrossRefGoogle Scholar
McAllister, DE, Harington, CR, Cumbaa, SL, Renaud, CB. 1988. Paleoenvironmental and biogeographic analyses of fossil fishes in peri-Champlain Sea deposits in eastern Canada. In: Gadd NR, editor. Geological Association of Canada Special Paper p. 241–258.Google Scholar
Newsome, SD, Clementz, MT, Koch, PL. 2010. Using stable isotope biogeochemistry to study marine mammal ecology. Marine Mammal Science 26(3):509572.Google Scholar
Normandeau, A, Lajeunesse, P, Trottier, A-P, Poiré, AG, Pienitz, R. 2017. Sedimentation in isolated glaciomarine embayments during glacio-isostatically induced relative sea level fall (northern Champlain Sea basin). Canadian Journal of Earth Sciences 54(10):10491062.CrossRefGoogle Scholar
Occhietti, S. 2007. The Saint-Narcisse morainic complex and early Younger Dryas events on the southeastern margin of the Laurentide Ice Sheet. Géographie physique et Quaternaire 61(2–3):89117.Google Scholar
Occhietti, S, ChartierH M, Hillaire-Marcel, C, Cournoyer, M, Cumbaa, S, Harington, R. 2001. Paléoenvironnements de la mer de Champlain dans la région de Québec, entre 11300 et 9750 bp: le site de Saint-Nicolas. Géographie physique et Quaternaire 55(1):2346.Google Scholar
Occhietti, S, Richard, P. 2003. Effet réservoir sur les âges 14C de la Mer de Champlain à la transition Pléistocène-Holocène: révision de la chronologie de la déglaciation au Québec méridional. Géographie physique et Quaternaire 57(2–3):115138.CrossRefGoogle Scholar
O’Leary, MH. 1988. Carbon isotopes in photosynthesis. BioScience 38(5):328336.CrossRefGoogle Scholar
Parent, M, Occhietti, S. 1999. Late Wisconsinan deglaciation and glacial lake development in the Appalachians of southeastern Québec. Géographie physique et Quaternaire 53(1):117135.Google Scholar
Peterson, BJ, Fry, B. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18(1):293320.CrossRefGoogle Scholar
Prichonnet, G. 1988. Glacial marine facies of the Late Wisconsinan Champlain Sea (Sourthern Québec). In: Gadd NR, editor. The late-Quaternary Development of the Champlain Sea. Geological Association of Canada Special Paper. p. 91–106.Google Scholar
Rau, GH, Mearns, AJ, Young, DR, Olson, RJ, Schafer, HA, Kaplan, IR. 1983. Animal 13C/12C correlates with trophic level in pelagic food webs. Ecology 64(5):13141318.CrossRefGoogle Scholar
Rau, GH, Takahashi, T, Marais, DJD. 1989. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341(6242):516518.CrossRefGoogle Scholar
Rau, GH, Takahashi, T, Marais, DJD, Sullivan, CW. 1991. Particulate organic matter δ13C variations across the Drake Passage. Journal of Geophysical Research: Oceans. 96(C8):1513115135.CrossRefGoogle Scholar
Rayburn, JA, Cronin, TM, Franzi, DA, Knuepfer, PLK, Willard, DA. 2011. Timing and duration of North American glacial lake discharges and the Younger Dryas climate reversal. Quaternary Research 75(3):541551.CrossRefGoogle Scholar
Rayburn, JA, Franzi, DA, Knuepfer, PLK. 2007. Evidence from the Lake Champlain Valley for a later onset of the Champlain Sea and implications for late glacial meltwater routing to the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 246(1):6274.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Richard, PJH, Occhietti, S. 2005. 14C chronology for ice retreat and inception of Champlain Sea in the St. Lawrence Lowlands, Canada. Quaternary Research 63(3):353358.CrossRefGoogle Scholar
Rodrigues, CG. 1988. Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea basin. In: Gadd NR, editor. The Late Quaternary Development of the Champlain Sea Basin. Geological Association of Canada Special Paper. p. 155–176.Google Scholar
Steadman, DW, Kirchgasser, WT, Pelkey, DM. 1994. A Late Pleistocene white whale (Delphinapterus leucas) from Champlain Sea sediments in northern New York. New York State Museum Bulletin 481:339345.Google Scholar
Steffensen, JP, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Fischer, H, Goto-Azuma, K, Hansson, M, Johnsen, SJ, Jouzel, J, et al. 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889):680684.CrossRefGoogle ScholarPubMed
Takahashi, CM, Nelson, DE, Southon, JS. 2002. Radiocarbon and stable isotope analyses of archaeological bone consolidated with hide glue. Radiocarbon 44(1):5962.CrossRefGoogle Scholar
Thompson, Z. 1853. Natural history of Vermont: with numerous engravings and an appendix. Thompson.Google Scholar
Tuck, LM. 1961. The murres: their distribution, populations, and biology: a study of the genus Uria. Ottawa: Roger Duhamel.Google Scholar
UCIAMS. 2021. W.M. Keck Carbon Cycle Accelerator Mass Spectrometer. Office of Information Technology, UCI. https://www.ess.uci.edu/group/ams/files/bone_protocol.pdf.Google Scholar
Van der Zanden, MJ, Rasmussen, JB. 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80(4):13951404.CrossRefGoogle Scholar
Vighi, M, Borrell, A, Aguilar, A. 2016. Stable isotope analysis and fin whale subpopulation structure in the eastern North Atlantic. Marine Mammal Science 32(2):535551.CrossRefGoogle Scholar
Xiao, W, Wang, R, Cheng, X. 2011. Stable oxygen and carbon isotopes from the planktonic foraminifera pachyderma in the Western Arctic surface sediments: Implications for water mass distribution. Advances in Polar Science 22:205214.Google Scholar