Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T12:34:14.508Z Has data issue: false hasContentIssue false

14C Dated Chronology of the Thickest and Best Resolved Loess/Paleosol Record of the LGM from SE Hungary Based on Comparing Precision and Accuracy of Age-Depth Models

Published online by Cambridge University Press:  10 January 2020

Pál Sümegi*
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 6722Szeged, Egyetem Street 2, Hungary Archaeological Institute of Hungarian Academy of Sciences, Budapest, Úri street 49, Hungary University of Szeged, Interdisciplinary Excellence Centre, Institute of Geography and Earth Sciences, Long Environmental Changes Research Team, H-6722Szeged, Egyetem u. 2-6, Hungary
Sándor Gulyás
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 6722Szeged, Egyetem Street 2, Hungary University of Szeged, Interdisciplinary Excellence Centre, Institute of Geography and Earth Sciences, Long Environmental Changes Research Team, H-6722Szeged, Egyetem u. 2-6, Hungary
Dávid Molnár
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 6722Szeged, Egyetem Street 2, Hungary University of Szeged, Interdisciplinary Excellence Centre, Institute of Geography and Earth Sciences, Long Environmental Changes Research Team, H-6722Szeged, Egyetem u. 2-6, Hungary
Gábor Szilágyi
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 6722Szeged, Egyetem Street 2, Hungary Hortobágy National Park, 4024Debrecen, Sumen u. 2, Hungary
Balázs P Sümegi
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 6722Szeged, Egyetem Street 2, Hungary Institute of Nuclear Research of HAS, 4026Debrecen, Bem tér 18/c, Hungary
Tünde Törőcsik
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 6722Szeged, Egyetem Street 2, Hungary University of Szeged, Interdisciplinary Excellence Centre, Institute of Geography and Earth Sciences, Long Environmental Changes Research Team, H-6722Szeged, Egyetem u. 2-6, Hungary Institute of Nuclear Research of HAS, 4026Debrecen, Bem tér 18/c, Hungary
Mihály Molnár
Affiliation:
Institute of Nuclear Research of HAS, 4026Debrecen, Bem tér 18/c, Hungary
*
*Corresponding author. Email: [email protected]

Abstract

The Madaras profile found at the northernmost fringe of Bácska loess plateau is one of the thickest and best-developed last glacial loess sequences of Central Europe. The 10-m profile corresponds to a period between 29 and 12 b2k. To unravel feedback to small-scale centennial climatic fluctuations at our site, recorded in the Greenland ice and North Atlantic marine cores, construction of a reliable chronology is needed. Reliability is expressed in terms of best achievable chronological precision. Accuracy however is based on choosing the model best describing the sedimentological features of our profile. Five different age-depth models had constructed and compared relying on 15 14C dates using various statistical, probabilistic approaches to choose the model with the highest achievable precision. Accuracy was also evaluated using accumulation rates against stratigraphy. Models constructed using the computer program Bacon performed best in terms of achieving the best possible stratigraphic accuracy. Seven meters of the profile represents the period of the LGM. The average sedimentation time was 16.8 yr/cm with the highest confined to the period of the LGM. Calculated average sedimentation rates were 4 times higher than previously reported. The peak accumulation periods are dated to the nadir of the LGM.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, Z, Liu, T, Lu, Y, Porter, SC, Kukla, G, Wu, X, Hua, Y. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quaternary International 7–8, 9195.Google Scholar
Andersen, KK, Svensson, A, Johnsen, SJ, Rasmussen, SO, Bigler, M, Röthlisberger, R, Ruth, R, Siggaard-Andersen, M-L, Steffensen, JP, Jensen, DD, Vinther, BM. 2006. The Greenland ice core chronology 2005, 15–42ka. Part 1: Constructing the time scale. Quaternary Science Reviews 25:32463257.CrossRefGoogle Scholar
Bennett, KD. 1994. Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. Holocene 4:337348.CrossRefGoogle Scholar
Blaauw, M. 2010. Methods and code for classical age-modeling of radiocarbon sequences. Quat. Geochronol. 5:512518.CrossRefGoogle Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 3:457474.Google Scholar
Blaauw, M, Christen, JA, Benett, KD, Reimer, PJ. 2018. Double the dates and go for Bayes-Impacts of model choice, dating density and quality of chronologies. Quaternary Science Reviews 188:5866.CrossRefGoogle Scholar
Blaauw, M, Heegaard, E. 2012. Estimation of age-depth relationships. In: Birks, HJB, Juggins, S, Lotter, A, Smol, JP, editors. Tracking environmental change using lake sediments, developments in paleoenvironmental research 5. Dordrecht: Springer. p. 379413.CrossRefGoogle Scholar
Bokhorst, MP, Vandenberghe, J, Sümegi, P, Lanczont, M, Gerasimenko, NP, Matviishina, ZN, Markovic, SB, Frechen, M. 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quaternary International 234:6472.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337360.Google Scholar
Clark, PU, Dyke, AS, Shakun, JD, Carlson, AE, Clark, J, Wohlfahrt, B, Mitrovica, JX, Hostetler, SW, McCabe, M. 2009. The Last Glacial Maximum. Science 325:710714.CrossRefGoogle ScholarPubMed
Denton, GH, Hausser, CJ, Lowell, TW, Moreno, PI, Andersen, BG, Heusser, LE, Schluchter, C, Marchant, DR. 1999. Interhemispheric linkage of paleoclimate during the last glaciation. Geographica Annales, Series A, Physical Geography 81A:107153.CrossRefGoogle Scholar
Hertelendi, E, Csongor, É, Záborszky, L, Molnár, I, Gál, I, Győrffy, M, Nagy, S. 1989. Counting system for high precision C-14 dating. Radiocarbon 32:399408.CrossRefGoogle Scholar
Hertelendi, E, Sümegi, P, Szöőr, G. 1992. Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. Radiocarbon 34:833839.CrossRefGoogle Scholar
Hupuczi, J, Sümegi, P. 2010. The Late Pleistocene paleoenvironment and paleoclimate of the Madaras section (South Hungary), based on preliminary records from mollusks. Central European Journal of Geoscience 2:6470.Google Scholar
Kemp, RA. 2001. Pedogenic modification of loess: significance for palaeoclimatic reconstructions. Earth-Science Rev. 54:145156.CrossRefGoogle Scholar
Kreveld, SV, Sarnthein, M, Erlenkeuser, H, Grootes, P, Jung, S, Nadeau, MJ, Pflaumann, U, Voelker, A. 2000. Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60–18 kyr. Paleoceanography 15:425442.CrossRefGoogle Scholar
Lisiecki, LM, Raymo, ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography 20, PA1003. Data archived at the World Data Center for Paleoclimatology, Boulder, Colorado, USA.Google Scholar
Lomax, J, Fuchs, M, Preusser, F, Fiebig, M. 2014. Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria. Quaternary International 351:8897.CrossRefGoogle Scholar
Lu, H, An, Z. 1998. Palaeoclimatic significance of grain size of loess-paleosol sequence of Central China. Science China Series D 41:626631.CrossRefGoogle Scholar
Martinson, D, Pisias, MG, Hays, JD, Imbrie, J, Moore, TC, Shackleton, NJ. 1987. Age dating and the orbital theory of ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27:130.CrossRefGoogle Scholar
Mix, AC, Bard, E, Schneider, R. 2001. Environmental processes of the ice age: land, oceans, glaciers. Quaternary Science Reviews 20:627657.CrossRefGoogle Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55:665676.CrossRefGoogle Scholar
Novothny, Á, Frechen, M, Horváth, E, Wacha, L, Rolf, C. 2011. Investigating the penultimate and last glacial cycles of the Sütto loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International 234:7585CrossRefGoogle Scholar
Pécsi, M. 1990. Loess is not just the accumulation of dust. Quaternary International 7–8:121.CrossRefGoogle Scholar
Pigati, JS, Quade, J, Shanahan, TM, Haynes, CV Jr. 2004. Radiocarbon dating of minute gastropods and new constraints on the timing of spring-discharge deposits in southern Arizona, USA. Palaeogeography. Palaeoclimatology. Palaeoecology 204:3345.CrossRefGoogle Scholar
Pigati, JS, Rech, JA, Nekola, JC. 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5:519532.CrossRefGoogle Scholar
Pigati, JS, McGeehin, JP, Muhs, DR, Bettis, III EA. 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76:114128.CrossRefGoogle Scholar
Porter, SC. 2001. Chinese loess record of monsoon climate during the last glacial-interglacial cycle. Earth-Sci. Rev. 54:115128. doi:10.1016/S0012-8252(01)00043-5.CrossRefGoogle Scholar
Porter, SC. 2007. Loess records—China. In: Scott, AE, editor. Encyclopedia of Quaternary science. Oxford: Elsevier. p. 14291440. doi: 10.1016/B0-44-452747-8/00160-5.CrossRefGoogle Scholar
Pye, K. 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14: 653667.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887. doi:10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, BM, Clausen, HB, Siggaard-Andersen, SJ, Larsen, LB, Dahl-Jensen, D, Bigler, M, Rhöthlisberger, R, Fischer, H, Hansson, ME, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research: Atmospheres 111:D06102. doi:10.1029/2005JD006079CrossRefGoogle Scholar
Schatz, AK, Buylaert, JP, Murray, A, Stevens, T, Scholten, T 2012. Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quaternary Geochronology 10:6874.CrossRefGoogle Scholar
Sokal, RR, Rohlf, FJ. 1995. Biometry: the principles and practice of statistics in biological research. New York: W.H. Freeman. 495 p.Google Scholar
Sümegi, P. 2005. Loess and Upper Paleolithic environment in Hungary. Aurea Kiadó, Nagykovácsi.Google Scholar
Sümegi, P, Hertelendi, E. 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15,000–70,000 BP years. Radiocarbon 40:855863.CrossRefGoogle Scholar
Sümegi, P, Gulyás, S, Csökmei, B, Molnár, D, Hambach, U, Stevens, T, Markovic, S, Almond, P. 2012. Climatic fluctuations inferred for the Middle and Late Pleniglacial (MIS 2) based on high-resolution (ca 20yr) preliminary environmental magnetic investigation of the loess section of the Madaras brickyard. Central European Geology 55:329345.CrossRefGoogle Scholar
Svensson, A, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Davies, SM, Sigfus, JJ, Muscheler, R, Rasussen, SO, Rhöthlisberger, R, Steffensen, JP, Vinther, BM. 2006. The Greenland ice core chronology 2005, 15–42ka. Part 2: comparison to other records. Quaternary Science Reviews 25:32583267.CrossRefGoogle Scholar
Telford, RJ, Heegaard, E, Birks, HJB. 2004. All age-depth models are wrong: but how badly? Quaternary Science Reviews 23:15.CrossRefGoogle Scholar
Trachsel, M, Telford, RJ. 2017. All age-depth models are wrong, but are getting better. Holocene 27:860869.CrossRefGoogle Scholar
Újvári, G, Kovács, J, Varga, G, Raucsik, B, Marković, SB. 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review. Quaternary Science Reviews 29:31573166.Google Scholar
Újvári, G, Molnár, M, Novothny, Á, Páll-Gergely, B, Kovács, J, Várhegyi, A. 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka. Quaternary Science Reviews 106:140154.CrossRefGoogle Scholar
Újvári, G, Stevens, T, Molnár, M, Demény, A, Lambert, F, Varga, G; Timothy, AJ, Páll-Gergely, B, Buylaert, JP, Kovács, J. 2017. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. PNAS 114(50):1063210638.CrossRefGoogle ScholarPubMed
Xu, B, Gu, Z, Han, J, Hao, Q, Lu, Y, Wang, L, Wu, N, Peng, Y. 2011. Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau. Quaternary Geochronology 6:383389.Google Scholar
Vandenberghe, J. 1985. Paleoenvironment and stratigraphy during the last glacial in the Belgian-Dutch border region. Quaternary Research 24:2338.CrossRefGoogle Scholar
Woillard, G, Mook, W. 1982. Carbon-14 dates at Grande Pile: correlation of land and sea-chronologies. Science 215:159161.CrossRefGoogle Scholar
Supplementary material: File

Sümegi et al. supplementary material

Sümegi et al. supplementary material 1

Download Sümegi et al. supplementary material(File)
File 10.3 KB
Supplementary material: File

Sümegi et al. supplementary material

Sümegi et al. supplementary material 2

Download Sümegi et al. supplementary material(File)
File 12.9 KB
Supplementary material: File

Sümegi et al. supplementary material

Sümegi et al. supplementary material 3

Download Sümegi et al. supplementary material(File)
File 13.6 KB
Supplementary material: Image

Sümegi et al. supplementary material

Sümegi et al. supplementary material 4

Download Sümegi et al. supplementary material(Image)
Image 1.1 MB
Supplementary material: File

Sümegi et al. supplementary material

Sümegi et al. supplementary material 5

Download Sümegi et al. supplementary material(File)
File 10 KB