Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T16:45:42.840Z Has data issue: false hasContentIssue false

14C Ages of a Varved Last Glacial Maximum Section Off Pakistan

Published online by Cambridge University Press:  18 July 2016

Ulrich von Rad*
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, D-30631 Hannover, Germany.
Michael Sarnthein
Affiliation:
Institut für Geowissenschaften, Universität Kiel, D-24118 Kiel, Germany.
Pieter M Grootes
Affiliation:
Leibniz Labor für Altersbestimmung und Isotopenforschung, Universität Kiel, D-24118 Kiel, Germany.
Heidi Doose-Rolinski
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, D-30631 Hannover, Germany.
Jochen Erbacher
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, D-30631 Hannover, Germany.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a core off Pakistan, we obtained 38 14C analyses by accelerator mass spectrometry (AMS) from a 4.4-m-thick, expanded, annually-laminated Last Glacial Maximum (LGM) section, bracketed by bioturbated intervals ascribed to the Heinrich-1 (H1) and Heinrich-2 (H2) equivalent events (52 14C analyses between 24–15 kyr BP). A floating varve age scale, anchored to the oxygen isotope record of the layer-counted GISP2 ice core at the H2/LGM boundary, results in an annually dated record for the LGM from 23,450–17,900 cal BP. The floating varve scale of the LGM provides us with a tentative calibration of local marine AMS 14C age dates to calendar years.

Type
Soils and Sediments
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Alley, RB, Shuman, CA, Meese, DA, Gow, AJ, Cuffey, KM, Fitzpatrick, JJ, Grootes, PM, Zielinski, GA, Spinelli, G, Elder, B. 1997. Visual-stratigraphic dating of the GISP2 ice core: basis, reproducibility, and application. Journal Geophysical Research 102 (C12), 26:367381.Google Scholar
Aniol, RW. 1993. Tree-ring analysis CATRAS. Dendrochronologia 1:4553.Google Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Beck, WJ, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Herrera-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during marine isotope stage 3. Science 292:2453–8.CrossRefGoogle Scholar
Berger, WH, von Rad, U. 2002. Decadal to millenial cyclicity in varves and turbidites from the Arabian Sea: hypothesis of tidal origin. Global Planetary Change 729:313–25.Google Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Dahl-Jensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Steffensen, JP, Sveinbjörnsdottir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-ky ice-core record. Nature 374:218–20.Google Scholar
Hughen, KA, Overpeck, JR, Lehman, SJ, Kashgarian, M, Peterson, LC, Alley, R, Sigman, DM. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.Google Scholar
Kitigawa, H, van der Plicht, J. 1998. A 40,000-year varved chronology from Lake Suigetsu, Japan: extension of the radiocarbon calibration curve. Radiocarbon 40(1): 501–16.Google Scholar
Kitigawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42(3): 369–80.Google Scholar
Laj, C, Kissel, C, Mazaud, A, Channell, JET, Beer, J. 2000. North Atlantic Paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Philosophical Transactions of the Royal Society of London A 358:1009–25.Google Scholar
Meese, DA, Alley, RB, Gow, AJ, Grootes, PM, Mayewski, PA, Ram, M, Taylor, KC, Waddington, ED, Zielinski, GA. 1994. Preliminary depth-age scale of the GISP2 ice core. CRREL Special Report 94-1. Hanover, New Hampshire: US Army Cold Regions Research Engineering Laboratory. 66 p.Google Scholar
Mix, AC, Bard, E, Schneider, R. 2001. Environmental processes of the Ice Age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20:627–58.Google Scholar
Nadeau, M-J, Schleicher, M, Grootes, PM, Erlenkeuser, H, Gottdang, A, Mous, DJW, Sarnthein, M, Willkomm, H. 1997. The Leibniz-Labor AMS facility at the Christian-Albrecht University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research B 123: 2230.Google Scholar
Sarnthein, M, Stattegger, K, Dreger, D, Erlenkeuser, H, Grootes, P, Haupt, B, Jung, S, Kiefer, T, Kuhnt, W, Pflaumann, U, Schäfer-Neth, C, Schulz, H, Schulz, M, Seidov, D, Simstich, J, van Kreveld, S, Vogelsang, E, Völker, A, Weinelt, M. 2001. Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky—concepts, reconstruction and numerical modelling. In: Schäfer, P, Ritzrau, W, Schlüter, M, Thiede, J, editors. The Northern Atlantic: A Changing Environment. Berlin: Springer. p 4566.Google Scholar
Schulz, H, Emeis, K, Erlenkeuser, H, von Rad, U. 2002. The Toba volcanic event and interstadial/stadial climate oscillations of the past 110,000 years. Quaternary Research 57:2231.Google Scholar
Schulz, H, von Rad, U, Erlenkeuser, H. 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–7.Google Scholar
Staubwasser, M, Sirocko, F, Grootes, PM, Erlenkeuser, H. 2002. South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene. Palaeoceanography 17(4):1063,doi:10.1029/2000PA000608.Google Scholar
Stuiver, M, Grootes, PM. 2000. GISP-2 oxygen isotope ratios. Quaternary Research 53:277–84.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL 98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Voelker, AHL, Sarnthein, M, Grootes, PM, Erlenkeuser, H, Laj, C, Mazaud, A, Nadeau, MJ, Schleicher, M. 1998. Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: implications for 14C calibration beyond 25 ka BP. Radiocarbon 40(1):517–34.Google Scholar
von Rad, U, Doose, H, cruise participants. 1998. SONNE Cruise SO 130 Cruise Report, MAKRAN II, Hannover: BGR, Archive-nr 117368, 152 + 26 p.Google Scholar
von Rad, U, Schaaf, M, Michels, KH, Schulz, H, Berger, WH, Sirocko, F. 1999a. A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian Sea. Quaternary Research 51:3953.CrossRefGoogle Scholar
von Rad, U, Schulz, H, Riech, V, den Dulk, M, Berner, U, Sirocko, F. 1999b. Multiple monsoon-controlled breakdown of oxygen minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan. Palaeogeography, Palaeoclimatology, Palaeoecology 152:129–61.Google Scholar
Waelbroek, C, Duplessy, J-C, Michel, E, Labeyrie, L, Paillard, D, Duprat, J. 2001. The timing of the last deglaciation in North Atlantic climate records. Nature 412: 724–7.Google Scholar