Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T21:40:19.378Z Has data issue: false hasContentIssue false

Vegetation responses to late Holocene climate changes in an Andean forest

Published online by Cambridge University Press:  07 September 2017

Jacob D. Schiferl*
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA
Mark B. Bush
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA
Miles R. Silman
Affiliation:
Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109, USA
Dunia H. Urrego
Affiliation:
College of Life and Environmental Science, University of Exeter, Rennes Drive, Exeter EX4 4RJ, United Kingdom
*
*Corresponding author at: Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA. E-mail address: [email protected] (J.D. Schiferl).

Abstract

A paleoecological record from Lake Palotoa (1370 m elevation) in the Andean foothills of Peru spans the last 3800 years. Lake Palotoa lies near the modern cloud base in a location sensitive to changes in atmospheric moisture. In many areas, these forests have been destroyed, but Lake Palotoa shows no sign of human occupation today or in the past. The modern forest surrounding the lake is dominated by the Andean palm, Dictyocaryum lamarckianum, which is also the most abundant taxon in the fossil pollen record. Fossil pollen data show the vegetation assemblages have not experienced strong compositional changes in the late Holocene. Global-scale climatic events such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are identified within the record, though the vegetation responses are subtle. Hedyosmum and Sloanea pollen percentages increase near the onset of the MCA and may reflect decreased seasonality. The LIA coincides with increased Hedyosmum pollen percentages, and increases in Clethra and Begonia, two elements that tend to occupy forests now found at higher elevations. Our findings demonstrate the stability of montane forest systems to natural Holocene climate change.

Type
Tribute to Daniel Livingstone and Paul Colinvaux
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apaéstegui, J., Cruz, F.W., Sifeddine, A., Espinoza, J.C., Guyot, J.L., Khodri, M., Strikis, N., et al. 2014. Hydroclimate variability of the South American Monsoon System during the last 1600 yr inferred from speleothem isotope records of the north-eastern Andes foothills in Peru. Climate of the Past Discussions 10, 533561.Google Scholar
Arens, N.C., 2001. Variation in performance of the tree fern Cyathea caracasana (Cyatheaceae) across a successional mosaic in an Andean cloud forest. American Journal of Botany 88, 545551.CrossRefGoogle Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.CrossRefGoogle ScholarPubMed
Binford, M.W., Kolata, A.L., Brenner, M., Janusek, J.W., Seddon, M.T., Abbott, M., Curtis, J. H., 1997. Climate variation and the rise and fall of an Andean civilization. Quaternary Research 47, 235248.CrossRefGoogle Scholar
Bird, B.W., Abbott, M.B., Vuille, M., Rodbell, D.T., Stansell, N.D., Rosenmeier, M.F., 2011. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proceedings of the National Academy of Sciences of the United States of America 108, 85838588.CrossRefGoogle ScholarPubMed
Birks, H.J.B., Gordon, A.D., 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, San Diego, CA.Google Scholar
Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A., Kubatzki, C., Roth, K., Kromer, B., 2005. Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model. Nature 438, 208211.Google Scholar
Bush, M.B., 1995. Neotropical plant reproductive strategies and fossil pollen representation. American Naturalist 145, 594609.CrossRefGoogle Scholar
Bush, M.B., Alfonso-Reynolds, A.M., Urrego, D.H., Valencia, B.G., Correa-Metrio, A.C., Zimmermann, M., Silman, M.R., 2015. Fire and climate: contrasting pressures on tropical Andean timberline species. Journal of Biogeography 42, 938950.CrossRefGoogle Scholar
Bush, M.B., McMichael, C.N., 2016. Holocene variability of an Amazonian hyperdominant. Journal of Ecology 104, 13701378.CrossRefGoogle Scholar
Bush, M.B., Silman, M.R., McMichael, C.N., Saatchi, S., 2008. Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 17951802.CrossRefGoogle ScholarPubMed
Bush, M.B., Silman, M.R., Urrego, D.H., 2004. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827829.CrossRefGoogle Scholar
Bush, M.B., Weng, C., 2007. Introducing a new (freeware) tool for palynology. Journal of Biogeography 34, 377380.CrossRefGoogle Scholar
Clark, R.L., 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediment. Pollen Spores 24, 523535.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., 1999. Amazon Pollen Manual and Atlas. Hardwood Academic, Amsterdam.Google Scholar
Diaz, H.F., Trigo, R., Hughes, M.K., Mann, M.E., Xoplaki, E., Barriopedro, D., 2011. Spatial and temporal characteristics of climate in medieval times revisited. Bulletin of the American Meteorological Society 92, 14871500.CrossRefGoogle Scholar
Ellison, A.M., 2004. Wetlands of Central America. Wetlands Ecology and Management 1, 355.CrossRefGoogle Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. Wiley, Chichester, UK.Google Scholar
Fahey, T.J., Sherman, R.E., Tanner, E.V., 2015. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. Journal of Tropical Ecology 32, 355367.CrossRefGoogle Scholar
Feeley, K.J., Silman, M.R., Bush, M.B., Farfan, W., Cabrera, K.G., Malhi, Y., Meir, P., Revilla, N.S., Quisiyupanqui, M., Saatchi, S., 2011. Upslope migration of Andean trees. Journal of Biogeography 38, 783791.CrossRefGoogle Scholar
Foster, P., 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55, 73106.CrossRefGoogle Scholar
Gentry, A.H., 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75, 134.CrossRefGoogle Scholar
Graham, N.E., Ammann, C.M., Fleitmann, D., Cobb, K.M., Luterbacher, J., 2011. Support for global climate reorganization during the Medieval Climate Anomaly. Climate Dynamics 37, 12171245.CrossRefGoogle Scholar
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, 1335.CrossRefGoogle Scholar
Hastenrath, S., Polzin, D., Francou, B., 2004. Circulation Variability Reflected in Ice Core and Lake Records of the Southern Tropical Andes. Climatic Change 64, 361375.CrossRefGoogle Scholar
Henderson, A., 1990. Flora Neotropica, Monograph 53: Arecaceae. Part I. Introduction and the Iriarteinae. New York Botanical Garden, New York.Google Scholar
Hill, M.O., 1979. DECORANA: A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging. Cornell University, New York.Google Scholar
Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T., 2001. Solar forcing of drought frequency in the Maya lowlands. Science 291, 13671370.CrossRefGoogle Scholar
Juggins, S., 2014. C2 Data Analysis. Version 1.7.6. Newcastle University, Newcastle upon Tyne, United Kingdom.Google Scholar
Kanner, L.C., Burns, S.J., Cheng, H., Edwards, R.L., Vuille, M., 2013. High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quaternary Science Reviews 75, 110.CrossRefGoogle Scholar
Kruskal, J.B., 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115129.CrossRefGoogle Scholar
Ledru, M.P., Jomelli, V., Samaniego, P., Vuille, M., Hidalgo, S., Herrera, M., Ceron, C., 2013. The Medieval Climate Anomaly and the Little Ice Age in the eastern Ecuadorian Andes. Climate of the Past 9, 307321.CrossRefGoogle Scholar
Malhi, Y., Girardin, C.A.J., Goldsmith, G.R., Doughty, C.E., Salinas, N., Metcalfe, D.B., Huasco, W.H., et al. 2017. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist 214, 10191032.CrossRefGoogle ScholarPubMed
Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P., Saatchi, S., 2010. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology 16, 31713175.CrossRefGoogle Scholar
Mann, M.E., Jones, P.D., 2003. Global surface temperatures over the past two millennia. Geophysical Research Letters 30, 1820. http://dx.doi.org/10.1029/2003GL017814.CrossRefGoogle Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.CrossRefGoogle ScholarPubMed
McCune, B., Grace, J.B., 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.Google Scholar
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., et al 2015. vegan: Community Ecology Package. R package version 2.2-1. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Parnell, A., 2016. Bchron: Radiocarbon Dating, Age-Depth Modelling, Relative Sea Level Rate Estimation, and Non-Parametric Phase Modelling. R package version 4.2.1. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Pitman, N.C., Terborgh, J.W., Silman, M.R., Núñez, V., Neill, D.A., Cerón, C.E., Palacios, W.A., Aulestia, M., 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82, 21012117.CrossRefGoogle Scholar
Pounds, J.A., Fogden, M.P., Campbell, J.H., 1999. Biological response to climate change on a tropical mountain. Nature 398, 611615.CrossRefGoogle Scholar
Rapp, J.M., Silman, M.R., 2012. Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Climate Research 55, 1732.CrossRefGoogle Scholar
Raspopov, O.M., Dergachev, V.A., Esper, J., Kozyreva, O.V., Frank, D., Ogurtsov, M, Kolström, T., Shao, X., 2008. The influence of the de Vries (∼200-year) solar cycle on climate variations: results from the central Asian mountains and their global link. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 616.CrossRefGoogle Scholar
R Development Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Roubik, D.W., Moreno, J.E.P., 1991. Pollen and Spores of Barro Colorado Island. Monographs in Systematic Botany, 36. Missouri Botanical Garden, St. Louis, MO.Google Scholar
Schimmelmann, A., Lange, C.B., Meggers, B.J., 2003. Palaeoclimatic and archaeological evidence for a 200-yr recurrence of floods and droughts linking California, Mesoamerica and South America over the past 2000 years. Holocene 13, 763778.CrossRefGoogle Scholar
Seager, R., Burgman, R., Kushnir, Y., Clement, A., Cook, E., Naik, N., Miller, J., 2008. Tropical Pacific forcing of North American medieval megadroughts: testing the concept with an atmosphere model forced by coral‐reconstructed SSTs. Journal of Climate 21, 61756190.CrossRefGoogle Scholar
Seltzer, G.O., Baker, P., Cross, S., Dunbar, R., Fritz, S., 1998. High-resolution seismic reflection profiles from Lake Titicaca, Peru-Bolivia: evidence for Holocene aridity in the tropical Andes. Geology 26, 167170.2.3.CO;2>CrossRefGoogle Scholar
Silman, M.R., Araujo-Murakami, A., Urrego, D.H., Bush, M.B., Pariamo, H., 2006. Estructura de las comunidades de árboles en el límite sur de la Amazonía occidental: Manu and Madidi. Ecología en Bolivia 40, 443452.Google Scholar
Smith, D.A., 1996. Three previously undescribed Central American species of Sloanea (Elaeocarpaceae). Novon 6, 120127.CrossRefGoogle Scholar
Sonett, C., Suess, H., 1984. Correlation of bristlecone pine ring widths with atmospheric C-14 variations: a climate-sun relation. Nature 307, 141143.CrossRefGoogle Scholar
Stansell, N.D., Rodbell, D.T., Abbott, M.B., Mark, B.G., 2013. Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru. Quaternary Science Reviews 70, 114.CrossRefGoogle Scholar
Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkila, U., et al. 2012. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences of the United States of America 109, 59675971.CrossRefGoogle Scholar
Suess, H.E, 1980. The radiocarbon record in tree rings of the last 8000 years. Radiocarbon 22, 200209.CrossRefGoogle Scholar
ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., Phillips, O.L., et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342, 1243092. http://dx.doi.org/10.1126/science.1243092.CrossRefGoogle ScholarPubMed
Thompson, L.G., Mosley-Thompson, E., Bolzan, J.F., Koci, B.R., 1985. A 1500-year record of tropical precipitation in ice cores from the Quelccaya Ice Cap, Peru. Science 229, 971973.CrossRefGoogle ScholarPubMed
Thompson, L.G., Mosley-Thompson, E., Dansgaard, W., Grootes, P.M., 1986. The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya Ice Cap. Science 234, 361364.CrossRefGoogle ScholarPubMed
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Zagorodnov, V.S., Howat, I.M., Mikhalenko, V.N., Lin, P.N., 2013. Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science 340, 945950.CrossRefGoogle ScholarPubMed
Todzia, C.A., 1988. Chloranthaceae: Hedyosmum . Flora Neotropica 48, 1138.Google Scholar
Urrego, D.A., Bush, M.B., Silman, M.R., 2010. A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research 73, 364373.CrossRefGoogle Scholar
Urrego, D.H., Hooghiemstra, H., Rama-Corredor, O., Martrat, B., Grimalt, J.O., Thompson, L., Bush, M.B., et al. 2016. Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods. Climate of the Past 12, 697711.CrossRefGoogle Scholar
Urrego, D.H., Silman, M.R., Correa-Metrio, A., Bush, M.B., 2011. Pollen–vegetation relationships along steep climatic gradients in western Amazonia. Journal of Vegetation Science 22, 795806.CrossRefGoogle Scholar
Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S 4th ed. Springer, New York.CrossRefGoogle Scholar
Webster, G.L., 1995. The panorama of Neotropical cloud forests. In Churchill, S.P., Balslev, H., Forero, E., Luteyn, J.L. (Eds.), Biodiversity and Conservation of Neotropical Montane Forests. New York Botanical Garden, Bronx, NY, pp 5377.Google Scholar
Weng, C., Bush, M.B., Silman, M.R., 2004. An analysis of modern pollen rain on an elevational gradient in southern Peru. Journal of Tropical Ecology 20, 113124.CrossRefGoogle Scholar
Woodson, R.E., Schery, R.W., Smith, C.E., 1965. Flora of Panama. Part VI. Family 113. Elaeocarpaceae. Annals of the Missouri Botanical Garden 52, 487495.CrossRefGoogle Scholar
Supplementary material: Image

Schiferl et al. supplementary material

Schiferl et al. supplementary material 1

Download Schiferl et al. supplementary material(Image)
Image 13.4 MB
Supplementary material: Image

Schiferl et al. supplementary material

Schiferl et al. supplementary material 2

Download Schiferl et al. supplementary material(Image)
Image 13.4 MB
Supplementary material: Image

Schiferl et al. supplementary material

Schiferl et al. supplementary material 3

Download Schiferl et al. supplementary material(Image)
Image 13.8 MB
Supplementary material: Image

Schiferl et al. supplementary material

Schiferl et al. supplementary material 4

Download Schiferl et al. supplementary material(Image)
Image 3.6 MB
Supplementary material: Image

Schiferl et al. supplementary material

Schiferl et al. supplementary material 5

Download Schiferl et al. supplementary material(Image)
Image 16 MB
Supplementary material: Image

Schiferl et al. supplementary material

Schiferl et al. supplementary material 6

Download Schiferl et al. supplementary material(Image)
Image 19.2 MB
Supplementary material: PDF

Schiferl et al. supplementary material

Schiferl et al. supplementary material 7

Download Schiferl et al. supplementary material(PDF)
PDF 320.5 KB
Supplementary material: PDF

Schiferl et al. supplementary material

Schiferl et al. supplementary material 8

Download Schiferl et al. supplementary material(PDF)
PDF 321.8 KB
Supplementary material: PDF

Schiferl et al. supplementary material

Schiferl et al. supplementary material 9

Download Schiferl et al. supplementary material(PDF)
PDF 378.3 KB
Supplementary material: PDF

Schiferl et al. supplementary material

Schiferl et al. supplementary material 10

Download Schiferl et al. supplementary material(PDF)
PDF 339.7 KB
Supplementary material: PDF

Schiferl et al. supplementary material

Schiferl et al. supplementary material 11

Download Schiferl et al. supplementary material(PDF)
PDF 100.2 KB
Supplementary material: File

Schiferl et al. supplementary material

Schiferl et al. supplementary material 12

Download Schiferl et al. supplementary material(File)
File 13.5 KB