Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T01:41:27.606Z Has data issue: false hasContentIssue false

Vegetation Response to Upper Pliocene Glacial/Interglacial Cyclicity in the Central Mediterranean

Published online by Cambridge University Press:  20 January 2017

Nathalie Combourieu-Nebout*
Affiliation:
C.N.R.S., Laboratoire de Paléontologie des Vertébrés et Paléontologie Humaine, Paléobiologie et Palynologie, URA 1433 CNRS, Université Pierre et Marie Curie, Paris VI-boite 106, 4 place Jussieu, 75252 Paris cedex 05, France

Abstract

New detailed pollen analysis of the lower part of the Upper Pliocene Semaforo section (Crotone, Italy) documents cyclic behavior of vegetation at the beginning of the Northern Hemisphere glaciations. The competition between four vegetation units (subtropical humid forest, deciduous temperate forest, altitudinal coniferous forest, and open xeric assemblage) probably reflects modifications of vegetation belts at this montane site. Several increases in herbaceous open vegetation regularly alternate with subtropical humid forest, which expresses rapid climatic oscillations. The complete temporal succession—deciduous forest (rich in Quercus), followed by subtropical humid forest (Taxodiaceae and Cathaya), then altitudinal coniferous forest (Tsuga, Cedrus, Abies, and Picea), and finally herbaceous open vegetation (Graminae, Compositae, and Artemisia )—displays the climatic evolution from warm and humid interglaciation to cold and dry glaciation. It also suggests an independent variation of temperature and humidity, the two main climatic parameters. The vegetation history of southern Calabria recorded in the Semaforo section have been correlated with the ∂18O signal established in the Atlantic Ocean.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Backman, J. Shackleton, N. J., and Tauxe, L. (1983). Quantitative nan-nofossil correlation to open ocean deep-sea sections from Plio-Pleistocene boundary at Vrica, Italy. Nature 304, 156158.CrossRefGoogle Scholar
Beaulieu, J.-L. de, and Reille, M. (1984). A long Upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13, 111132.CrossRefGoogle Scholar
Bertoldi, R. Rio, D., and Thunell, R. (1989). Pliocene-Pleistocene veg-etational and climatic evolution of the south central Mediterranean. Pateogeography, Paleoclimatology, Paleoecology 72, 263275.CrossRefGoogle Scholar
Bessedik, M. (1985). “Reconstitution des environnements miocènes des régions nord-ouest méditerranéennes à partir de la palynologie,” unpublished Ph.D. thesis. Montpellier II University.Google Scholar
Beug, H. J. (1975). Changes of climate and vegetation belts in the mountains of Mediterranean Europe during the Holocene. Bulletin of Geology 10, 101110.Google Scholar
Bonin, G. (1981). L’étagement de la végétation dans l’Appenin méridional. Ecologta Mediterranea 7(2), 7991.CrossRefGoogle Scholar
Br6nac, P. (1984). Végétation et climat de la Campanie du sud (Italie) au Pliocene final d’après l’analyse pollinique des dépots de Camerota. Ecologia Méditerranea 10(3-4), 207216.CrossRefGoogle Scholar
Ciaranfi, N. Guida, M. Iaccarino, G. Pescatore, T. Pieri, P. Rap-isardi, L. Richetti, G. Grosso, I. Torre, M. Tortorici, L. Turco, E. Scarpa, R. di Cuscito, M. Guerra, I. Iannaccone, G. Panza, G. F., and Scandone, P. (1983). Elementi sismotettonici dell’Apennino me-ridionale. Bollettino delta Societa geologica Italiana 102, 201222.Google Scholar
Combourieu-Nebout, N. (1987). “Les premiers cycles glaciaire-interglaciaire en région méditerranéenne d’après l’analyse pa-lynologique de la série plio-pléistocène de Crotone (Italie méridion-ale),” unpublished Ph.D. thesis. Montpellier II University.Google Scholar
Combourieu-Nebout, N., and Vergnaud-Grazzini, C. (1991). Late Pliocene Northern Hemisphere Glaciation: The continental and ma-rine responses in central Mediterranean. Quaternary Science Re-views 10, 319334.CrossRefGoogle Scholar
Einarsson, T., and Albertsson, K. J. (1988). The glacial history of Iceland during the past three million years. In “The past Three Million Years: Evolution of Climatic Variability in the North Atlantic Region” (Shackleton, N. J. West, R. G., and Bowen, D. Q., Eds.), pp. 227234. University Press, Cambridge.Google Scholar
Faegri, K., and Iversen, J. (1975). “Textbook of Pollen Analysis,” 3rd ed. Oxford, Blackwell. Google Scholar
Guérémy, P. (1972). La Calabre centrale et septentrionale. Guide d’excursion géomorphologique. Travaux de l’lnstilut Géographique de Reims 10.Google Scholar
Hammen, T. van der, Wijmstra, T. A., and Zagwijn, W. H. (1971). The floral record of the Late Cenozoic of Europe. In “The Late Cenozoic Glacial Ages” (Turekian, K. K., Ed.), pp 392424. Yale Univ. Press, New Haven.Google Scholar
Heusser, L., and Balsam, W. L. (1977). Pollen distribution in the Northeast Pacific Ocean. Quaternary Research 7, 4562.CrossRefGoogle Scholar
Hilgen, F. J. (1991). Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implications for the geomagnetic polarity time scale. Earth and Planetary Science Letters 104, 226244.CrossRefGoogle Scholar
Krüssman, G. (1972). “Handbuck der Langhölze” (Parey, P., Ed.), 2nd ed; Vols. 1 and 2. Berlin and Hamburg.Google Scholar
Leroy, S. (1990). “Paléoclimats plio-pléistocènes en Catalogne et Languedoc d’après la palynologie de formations lacustres,” unpub-lished Ph.D. thesis. Louvain-la-Neuve University.Google Scholar
Mankinen, E. A., and Dalrymple, G. B. (1979). Revised geomagnetic polarity time scale for the interval 0-5 My BP. Journal of Geophysical Research 84, 615626.CrossRefGoogle Scholar
Obradovitch, J. D. Naeser, C. W. Pasini, G., and Bigazzi, G. (1982). Age constraints on the proposed Plio-Pleistocene boundary strato-type at Vrica, Italy. Nature 298, 5559.CrossRefGoogle Scholar
Ozenda, P. (1975). Sur les étages de végétation dans les montagnes du bassin méditerranéen. Documents de Cartographic écologique 16, 132.Google Scholar
Quézel, P. Barbero, M. Bonin, G., and Loisel, R. (1980). Essai de corrélations phytosociologiques et bioclimatiques entre quelques structures actuelles et passées de la végétation méditerranéenne. Naturalia Monspeltensis. hors série 89100.Google Scholar
Quézel, P., and Shevock, J. (1982). Essai de mise en parallèle de la zonation altitudinale des structures forestières entre la Californie mérodionale et le pourtour méditerranéen. Ecologia Méditerranea 8(1-2), 389408.CrossRefGoogle Scholar
Raymo, M. E. Ruddiman, W. F. Backman, J. Clement, B. M., and Martinson, D. J. (1989). Late Pliocene variation in Northern Hemi-sphere ice sheets and North Atlantic deep water circulation. Paleoceanography 2(4), 413446.CrossRefGoogle Scholar
Rögl, V. F., and Steininger, F. F. (1983). Vom Zerfall der Tethys zu Mediterra und Paratethys. Die neogene Paläogeographie und Palins-pastik des zircum-mediterranen raumes. Annalen naturhistorishen Museum in Wein 85(A), 135163.Google Scholar
Shackleton, N. J. Backman, J. Zimmerman, H. Kent, D. W. Hall, M. A. Roberts, D. G. Schnitker, D. Baldauf, 3. G. Desprairies, A. Homrighausen, R. Huddlestun, P. Keene, J. B. Kaltenback, A, J. Krumsiek, K. A. O. Morton, A. C Murray, J. W., and West-berg-Smith, J. (1984). Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620623.CrossRefGoogle Scholar
Shackleton, N. J. Berger, A., and Peltier, W. R. (1993). An alternative astronomical calibration of the Lower Pleistocene time scale based on ODP Site 677. Transactions of the Royal Society of Edinburgh, in press.Google Scholar
Spaak, P. (1983). Accuracy in correlation and ecological aspects of the planktonic foraminiferal zonation of the Mediterranena Pliocene. Utrecht Micropaleontological Bulletin 28.Google Scholar
Suc, J. P. (1984). Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307, 429432.CrossRefGoogle Scholar
Suc, J. P. (1989). Distribution latitudinale et étagement des associations végetales au Cenozoique supérieur dans 1’aire ouest-méditerra-néenne. Bulletin de la Societé Géologique de France 8(5, 3) 541550.CrossRefGoogle Scholar
Suc, J.-R, and Zagwijn, W. H. (1983). Plio-Pleistocene correlations between the northwestern Mediterranean region and northwestern Europe according to recent biostratigraphic and palaeoclimatic data. Boreas 12, 153166.CrossRefGoogle Scholar
Tauxe, L. Opdyke, N. D. Pasini, G., and Elmi, C. (1983). Age of the Plio-Pleistocene boundary in the Vrica section, southern Italy. Nature 304, 125129.CrossRefGoogle Scholar
Vankat, J. L. (1979). “The Natural Vegetation of North America.” Wiley, New York.Google Scholar
Vergnaud-Grazzini, C Saliege, J. F. Urrutiager, M. J., and Iannace, A. (1990). Oxygen and carbone isotope stratigraphy of ODP Hole 653A and Site 654: The Plio-Pleistocene Glacial history recorded in the Tyrrhenian Basin (West Mediterranean). ODP Leg 107B In Proceeding ODP Scientific Results 107(Kastens K. A., Mascle J. et al., eds.), pp. 361386. Ocean Drilling Program, College Station, TX.Google Scholar
Verhallen, P. J. J. M. (1987). Early development of Bulimina marginata in relation to paleoenvironmental changes in the Mediterranean. Proceeding of the Koninklijke Nederlandse Akademi van Wetenschappen B90, 161188.Google Scholar
Wang, C. W. (1961). “The Forest of China (with a Survey of Grassland and Desert Vegetation),” Vol. 5. Maria Moors Cabot Foundation, Cambridge, MA.Google Scholar
Wang, F. H. (1986). On the systematics of Cathaya. In “L’evolution des Gymnospermes, approche biologique et paléobiologique,” pp. 5455. Colloque de la Fondation L. Emberger-Ch.Sauvage (ré-sumés), Montpellier.Google Scholar
Watts, W. A. (1985). A long pollen record from Laghi di Monticchio, southern Italy: A preliminary account. Journal of the Geological Society 142, 491499.CrossRefGoogle Scholar
Zachariasse, W. J. Zijderveld, J. D. A. Langereis, C. G. Hilgen, F. J., and Verhallen, P. J. J. M. (1989). Early Late Pliocene biochro-nology and surface water temperature variations in the Mediterranean. Marine Micropaleontology 14, 339355.CrossRefGoogle Scholar
Zachariasse, W. J. Gudjonsson, L. Hilgen, F. J. Langereis, C. G. Lourens, L. J. Verhallen, P. J. J. M., and Zijderveld, J. D. A. (1990). Late Gauss-Matuyama invasion of Neogloboquadrina atlan-tica in the mediterranean and associated record of climatic change. Paleoceanography 5(2), 239252.CrossRefGoogle Scholar
Zheng, Z. (1990). Végétation et climats néogènes des Alpes Maritimes franco-italiennes d’aprés les données de l’analyse palynologique. Paléobiologie Continentals 17, 217244.Google Scholar
Zijderveld, J. D. A. Hilgen, F. J. Langereis, C. G. Verhallen, P. J. J. M., and Zachariasse, W. J. (1991). Integrated magnetostratig-raphy and biostratigraphy of the upper Pliocene-lower Pleistocene from the Monte Singa and Crotonc Arca in Calabria, Italy. Earth and Planetary Science Letters 107, 597714.CrossRefGoogle Scholar
Zohary, M. (1973). “Geobotanical Foundations of the Middle East.” (Fisher, , Ed.) Stuttgart.Google Scholar