Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T22:55:18.444Z Has data issue: false hasContentIssue false

Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record

Published online by Cambridge University Press:  20 January 2017

Ulrich C Müller
Affiliation:
Geographisches Institut, Universität Tübingen, Hölderlinstr. 12, D-72074 Tübingen, Germany; Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA
Jörg Pross
Affiliation:
Institut für Geowissenschaften, Universität Tübingen, Sigwartstr. 10, D-72076 Tübingen, Germany
Erhard Bibus
Affiliation:
Geographisches Institut, Universität Tübingen, Hölderlinstr, 12, D-72074 Tübingen, Germany

Abstract

The response of Central European vegetation to rapid climate change during the late Quaternary period (Eemian to Holocene) is assessed by data from the new pollen record of Füramoos, southwestern Germany. This record represents the longest late Quaternary pollen record north of the Alps as currently known. Its high degree of completeness allows detailed correlations with Greenland ice cores and sea–surface temperature records from the North Atlantic. Our data show that if climate deteriorations were not long or severe enough to extirpate refugia of arboreal taxa north of the Alps such as during marine oxygen isotope stage (MIS) 5 (i.e., Würm Stadial A, Stadial B, and Stadial C), reforestation with the onset of warmer conditions in Central Europe occurred on a centennial scale. If arboreal taxa became completely extinct north of the Alps such as during MIS 4 (i.e., Würm Stadial D), several thousand years were necessary for the reimmigration from refugia situated in regions south of the Alps. Thus, Dansgaard–Oeschger interstades (DOIS) 24 to 20 and 15 to 11 are expressed in Central European pollen records, whereas DOIS 19 to 16 are not recorded due to migration lags.

Type
Articles
Copyright
Elsevier Science (USA)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhänsli, H., Watts, W.A., Wulf, S., and Zolitschka, B. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, (1999). 740 743.Google Scholar
De Beaulieu, J.-L., Reille, M., (1984). A long Upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13, 111132.Google Scholar
De Beaulieu, J.-L., Reille, M., (1989). The transition from temperate phases to stadials in the long Upper Pleistocene sequence from Les Echets (France). Palaeogeography, Palaeoclimatology, Palaeoecology 72., 147159.Google Scholar
De Beaulieu, J.-L., Reille, M., (1992). The last climatic cycle at la Grande Pile (Vosges, France) a new pollen profile. Quaternary Science Reviews 11, 431438.Google Scholar
Behre, K.-E. Biostratigraphy of the last glacial period in Europe. Quaternary Science Reviews 8, (1989). 25 44.Google Scholar
Behre, K.-E., and Van der Plicht, J. Towards an absolute chronology for the last glacial period in Europe. radiocarbon dates from Oerel, northern Germany. Vegetation History and Archaeobotany 1, (1992). 111 117.Google Scholar
Bibus, E., Rähle, W., and Wedel, J. Profilaufbau, Molluskenführung and Parallelisierungsmöglichkeiten im Lössprofil Mainz-Weisenau. Eiszeitalter und Gegenwart 51, (2001). 1 14.Google Scholar
Birks, H.J.B., and Birks, H.H. Quaternary Palaeoecology. (1980). Edward Arnold, London.Google Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, (1993). 143 147.Google Scholar
Caspers, G., (1997). Die eem- und weichselzeitliche Hohlform von Groβ Todtshorn (Kr. Harburg; Niedersachsen)—Geologische und palynologische Untersuchungen zu Vegetation und Klimaverlauf der letzten Kaltzeit. in: Freund, H., Caspers, G. (Eds.), Vegetation und Paläoklima der Weichsel-Kaltzeit im nördlichen Mitteleuropa, Hannover; Schriftenreihe der deutschen Geologischen Gesellschaft 4, 759.Google Scholar
Chapman, M.R., and Shackleton, N.J. Global ice-volume fluctuations, North Atlantic ice-rafting events, and deep-ocean circulation changes between 130 and 70 ka. Geology 27, (1999). 795 798.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, (1993). 218 220.Google Scholar
Drescher-Schneider, R. The Riss–Würm interglacial from West to East in the Alps. an overview of the vegetational succession and climatic development. Geologie en Mijnbouw 79, 2/3 (2000). 233 239.Google Scholar
Drescher-Schneider, R., (2000b). Klimaentwicklung im Riss/Würm Interglazial (Eem) und Frühwürm in den Ostalpen. in: Husen, D. (Ed.), Mitteilungen der Kommission für Quartärforschung, Österreichische Akademie der Wissenschaften, Vol. 12, Google Scholar
Forsström, L. Duration of interglacials. a controversial question. Quaternary Science Reviews 20, (2001). 1577 1586.Google Scholar
Frenzel, B., (1978). Das Problem der Riβ/Würm-Warmzeit im deutschen Alpenvorland. in: Frenzel, B., (Ed.), Quaternary Glaciations in the Northern Hemisphere, IGCP 73/1/24 Excursion guide book, 205 p., Bonn-Bad Godesberg, Google Scholar
Frenzel, B., Bludau, W., (1987). On the duration of the interglacial to glacial transition at the end of the Eemian interglacial (deep sea stage 5e): Botanical and sedimentological evidence. in: Berger, W. H., Labeyrie, L. D. (Eds.), Abrupt Climatic Change NATO ASI Series, Reidel, D., Dordrecht, , pp. 151162.Google Scholar
Ganopolski, A., and Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, (2001). 153 158.Google Scholar
Grootes, P.M., Stuiver, M., White, W.C., Johnsen, S., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland Ice cores. Nature 366, (1993). 552 554.Google Scholar
Grüger, E. Palynostratigraphy of the last interglacial/glacial cycle in Germany. Quaternary International 3/4, (1989). 69 79.Google Scholar
Grüger, E. Correlation of Middle-European Late-Pleistocene pollen sequences of the Pfefferbichl and Zeifen types. Mededelingen Rijks Geologische Dienst 52, (1995). 97 104.Google Scholar
Hahne, J., Kemle, S., Merkt, J., and Meyer, K.-D. Eem-, weichsel- und saalezeitliche Ablagerungen der Bohrung “Quakenbrück GE 2.”. Geologisches Jahrbuch A 134, (1994). 9 69.Google Scholar
Van der Hammen, T., Maarleveld, G.C., Vogel, J.C., Zagwijn, W., (1967). Stratigraphy, climatic succession and radiocarbon dating of the last glacial in the Netherlands. Geologie en Mijnbouw 46, 7995.Google Scholar
Kukla, G., McManus, J.F., Rousseau, D.D., and Chuine, I. How long and how stable was the last interglacial?. Quaternary Science Reviews 16, (1997). 605 612.Google Scholar
Küttel, M. Züge der Jungpleistozänen Vegetations- und Landschaftsgeschichte der Zentralschweiz. Revue de Paléobiologie 8, (1989). 525 614.Google Scholar
Lang, G. Quartäre Vegetationsgeschichte Europas. (1994). Fischer, Stuttgart.Google Scholar
Litt, T., Brauer, A., Goslar, T., Merkt, J., Balaga, K., Müller, H., Ralska-Jasiewiczowa, M., Stebich, M., and Negendank, J.F.W. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews 20, (2001). 1233 1249.Google Scholar
Mangerud, J. Correlation of the Eemian and the Weichselian with deep sea oxygen isotope Stratigraphy. Quaternary International 3/4, (1989). 1 4.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. Age dating and the orbital theory of the ice ages. development of a high-resolution 0 to 300,000 year chronostratigraphy. Quaternary Research 27, (1987). 1 29.Google Scholar
McManus, J.F., Bond, G.C., Broecker, W.S., Johnsen, S., Labeyrie, L., and Higgins, S. High resolution climate records from the North Atlantic during the last interglacial. Nature 371, (1994). 326 329.Google Scholar
Müller, H. Pollenanalytische Untersuchungen und Jahresschichtenzählungen an der eemzeitlichen Kieselgur von Bispingen/Luhe. Geologisches Jahrbuch A 21, (1974). 148 169.Google Scholar
Müller, U.C. A late-Pleistocene pollen sequence from the Jammertal, south-western Germany with particular reference to location and altitude as factors determining Eemian forest composition. Vegetation History and Archaeobotany 9, (2000). 125 131.Google Scholar
Müller, U.C., (2001). Die Vegetations- und Klimaentwicklung im jüngeren Quartär anhand ausgewählter Profile aus dem südwestdeutschen Alpenvorland. Tübinger Geowissenschaftliche Arbeiten D7 Google Scholar
Reille, M., Guiot, J., and de Beaulieu, J.-L. The Montaigu Event. an abrupt climatic change during the Early Wurm in Europe. Kukla, G.J., Went, E. Start of a Glacial, NATO ASI Series vol. 13, (1992). Springer Verlag, Berlin–Heidelberg. 85 95.Google Scholar
Reille, M., de Beaulieu, J.-L., Svobodova, H., Andrieu-Ponel, V., and Goeury, C. Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). Journal of Quaternary Science 15, 7 (2000). 665 685.3.0.CO;2-G>CrossRefGoogle Scholar
Shackleton, N.J., Chapman, M., Sanchez Goñi, M.F., Pailler, D., and Lancelot, Y. The classic marine isotope substage 5e. Quaternary Research 58, (2002). 14 16.Google Scholar
Schulz, H., von Rad, U., and Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, (1998). 54 57.Google Scholar
Tinner, W., and Lotter, A.F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, (2001). 551 554.Google Scholar
Tzedakis, P.C. Long-term tree populations in Northwest Greece through multiple Quaternary climatic cycles. Nature 364, (1993). 437 440.Google Scholar
Tzedakis, P.C., Andrieu, V., de Beaulieu, J.-L., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J., and Wijmstra, T.A. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth and Planetary Science Letters 150, (1997). 171 176.Google Scholar
Tzedakis, P.C., Andrieu, V., de Beaulieu, J.-L., Birks, H.J.B., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J., and Wijmstra, T.A. Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quaternary Science Reviews 20, (2001). 1583 1592.Google Scholar
Usinger, H., (1975). Pollenanalytische Untersuchungen an zwei Spätglazial-Vorkommen in Schleswig-Holstein (mit besonderer Berücksichtigung der pollenanalytischen Birken–Differenzierung). Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig–Holstein und Hamburg 25 Google Scholar
Vandenberghe, J. Paleoenvironment and stratigraphy during the last glacial in the Belgian–Dutch border region. Quaternary Research 24, (1985). 23 38.Google Scholar
Welten, M., (1982). Pollenanalytische Untersuchungen im jüngeren Quartär des nördlichen Alpenvorlandes der Schweiz. Beiträge zur geologischen Karte der Schweiz 156 Google Scholar
Welten, M., (1988). Neue pollenanalytische Ergebnisse über das jüngere Quartär des nördlichen Alpenvorlandes der Schweiz (Mittel- und Jungpleistozän). Beiträge zur geologischen Karte der Schweiz 162 Google Scholar
Winterholler, K., (1999). Sedimentologische, Pedologische und Ökologische Untersuchungen zur Landschaftsentwicklung des Füramooser Riedes (Oberschwaben). unpublished diploma thesis, Geographic Institute, University of Tübingen, Google Scholar
Woillard, G.M. Grande Pile peat bog. a continuous pollen record for the last 140,000 years. Quaternary Research 9, (1978). 1 21.Google Scholar
Zagwijn, W.H. Vegetation, climate and radiocarbon datings in the late Pleistocene of the Netherlands, Part I. the Eemian and early Weichselian. Mededelingen Geologische Stichting 14, (1961). 15 45.Google Scholar
Zagwijn, W.H. Vegetation, climate and radiocarbon datings in the late Pleistocene of the Netherlands, Part II. middle Weichselian. Mededelingen Rijks Geologische Dienst 25, (1974). 101 111.Google Scholar