Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T04:49:05.214Z Has data issue: false hasContentIssue false

Vegetation and fire history since the last glacial maximum in an inland area of the western Mediterranean Basin (Northern Iberian Plateau, NW Spain)

Published online by Cambridge University Press:  20 January 2017

César Morales-Molino*
Affiliation:
Departamento de Silvopascicultura (U.D. Botánica), E.T.S.I. de Montes, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain Departamento de Biología (Botánica), Facultad de Ciencia, Universidad Autónoma de Madrid, c/Darwin 2, Cantoblanco, 28049 Madrid, Spain
Mercedes García-Antón
Affiliation:
Departamento de Biología (Botánica), Facultad de Ciencia, Universidad Autónoma de Madrid, c/Darwin 2, Cantoblanco, 28049 Madrid, Spain
*
*Corresponding author at: Dpto. Silvopascicultura (U.D. Botánica), E.T.S.I. Montes, Ciudad Universitaria s/n, 28040, Madrid, Spain. E-mail addresses:[email protected] (C. Morales-Molino),[email protected] (M. García-Antón).

Abstract

We reconstructed vegetation responses to climate oscillations, fire and human activities since the last glacial maximum in inland NW Iberia, where previous paleoecological research is scarce. Extremely sparse and open vegetation composed of steppic grasslands and heathlands with scattered pioneer trees suggests very cold and dry conditions during the Oldest Dryas, unsuitable for tree survival in the surroundings of the study site. Slight woodland expansion during the Bølling/Allerød was interrupted by the Younger Dryas cooling. Pinewoods dominated for most of the early Holocene, when a marked increase in fire activity occurred. Deciduous trees expanded later reaching their maximum representation during the mid-Holocene. Enhanced fire activity and the presence of coprophilous fungi around 6400–6000 cal yr BP suggest an early human occupation around the site. However, extensive deforestation only started at 4500 cal yr BP, when fire was used to clear the tree canopy. Final replacement of woodlands with heathlands, grasslands and cereal crops occurred from 2700 cal yr BP onwards due to land-use intensification. Our paleoecological record can help efforts aimed at restoring the natural vegetation by indicating which communities were dominant at the onset of heavy human impact, thus promoting the recovery of currently rare oak and alder stands.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.R.M., Huntley, B., and Watts, W.A. The vegetation and climate of northwest Iberia over the last 14000 yr. Journal of Quaternary Science 11, (1996). 125147.Google Scholar
Ammann, B., Birks, H.J.B., Brooks, S.J., Eicher, U., von Grafenstein, U., Hofmann, W., Lemdahl, G., Schwander, J., Tobolski, K., and Wick, L. Quantification of biotic responses to rapid climatic changes around the Younger Dryas — a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 159, (2000). 313347.Google Scholar
Ammann, B., van Leeuwen, J.F.N., van der Knaap, W.O., Lischke, H., Heiri, O., and Tinner, W. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeography, Palaeoclimatology, Palaeoecology (2012). http://dx.doi.org/10.1016/j.palaeo.2012.07.010Google Scholar
Baker, A.G., Bhagwat, S.A., and Willis, K.J. Do fungal spores make a good proxy for past distribution of large herbivores?. Quaternary Science Reviews 62, (2013). 2131.CrossRefGoogle Scholar
Behre, K.-E. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23, (1981). 225245.Google Scholar
Bennett, K.D. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, (1996). 155170.Google Scholar
Bennett, K.D. Documentation for psimpoll 4.27 and pscomb 1.03. C Programs for Plotting and Analyzing Pollen Data. (2009). The 14Chrono Centre, Archaeology and Palaeoecology, Queen's University of Belfast, Belfast, UK. (Available at: http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html (accessed September 20th, 2009))Google Scholar
Bennett, K.D., and Humphry, R.W. Analysis of late-glacial and Holocene rates of vegetational change at two sites in the British Isles. Review of Palaeobotany and Palynology 85, (1995). 263287.Google Scholar
Bennett, K.D., Boreham, S., Sharp, M.J., and Switsur, V.R. Holocene history of environment, vegetation and human settlement on Catta Ness, Lunnasting, Shetland. Journal of Ecology 80, (1992). 241273.Google Scholar
Birks, H.H., and Ammann, B. Two terrestrial records of rapid climate change during the Glacial–Holocene transition (14,000–9,000 calendar years B.P.) from Europe. PNAS 97, (2000). 13901394.CrossRefGoogle Scholar
Birks, H.J.B., and Line, J.M. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2, (1992). 110.Google Scholar
Björck, S., Wlaker, M.J.C., Cwynar, L., Johnsen, S.J., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B., INTIMATE Group, An event stratigraphy for the last termination in the North Atlantic based on the Greenland Ice Core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, (1998). 283292.3.0.CO;2-A>CrossRefGoogle Scholar
Blanco-González, A., and López-Sáez, J.A. Dynamics of pioneer colonisation in the Early Iron Age in the Duero basin (Central Iberia, Spain): Integrating archaeological and palynological records. Journal of Environmental Archaeology 18, (2013). 102113.Google Scholar
Blondel, J. The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Human Ecology 34, (2006). 713729.Google Scholar
Brun, C. Anthropogenic indicators in pollen diagrams in eastern France: a critical review. Vegetation History and Archaeobotany 20, (2011). 135142.Google Scholar
Carretero, S. El ejército romano del Noroeste peninsular durante el Alto Imperio. Estado de la cuestión. Gladius 19, (1999). 143156.CrossRefGoogle Scholar
Carrión, J.S. Patterns and processes of Late Quaternary environmental change in a mountain region of southwestern Europe. Quaternary Science Reviews 21, (2002). 20472066.CrossRefGoogle Scholar
Carrión, J.S., and van Geel, B. Fine-resolution Upper Weichselian and Holocene palynological record from Navarrés (Valencia, Spain) and a discussion about factors of Mediterranean forest succession. Review of Palaeobotany and Palynology 106, (1999). 209236.Google Scholar
Carrión, J.S., Fuentes, N., González-Sampériz, P., Sánchez Quirante, L., Finlayson, J.C., Fernández, S., and Andrade, A. Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quaternary Science Reviews 26, (2007). 14551475.Google Scholar
Carrión, J.S., Fernández, S., González-Sampériz, P., Leroy, S.A.G., Bailey, G.N., López-Sáez, J.A., Burjachs, F., Gil-Romera, G., García-Antón, M., Gil-García, M.J., Parra, I., Santos, L., López-García, P., Yll, E.I., and Dupré, M. Quaternary pollen analysis in the Iberian Peninsula: the value of negative results. Internet Archaeology 25, (2009). (10.11141/ia.25.5) Google Scholar
Carrión, J.S., Fernández, S., González-Sampériz, P., Gil-Romera, G., Badal, E., Carrión-Marco, Y., López-Merino, L., López-Sáez, J.A., Fierro, E., and Burjachs, F. Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Review of Palaeobotany and Palynology 162, (2010). 458475.Google Scholar
Carrión-Marco, Y., Kaal, J., López-Sáez, J.A., López-Merino, L., and Martínez Cortizas, A. Holocene vegetation change in NW Spain revealed by anthracological and palynological records from a colluvial soil. The Holocene 20, (2010). 5366.CrossRefGoogle Scholar
Clark, P.U., Shakun, J.D., Baker, P.A. et al. Global climate evolution during the last deglaciation. Proceedings of the National Academy of Sciences 109, (2012). E1134E1142.Google Scholar
Colombaroli, D., Vannière, B., Chapron, E., Magny, M., and Tinner, W. Fire-vegetation interactions during the Mesolithic-Neolithic transition at Lago dell'Accesa, Tuscany, Italy. The Holocene 18, (2008). 679692.Google Scholar
Colombaroli, D., Tinner, W., van Leeuwen, J., Noti, R., Vescovi, E., Vannière, B., Magny, M., Schmidt, R., and Bugmann, H. Response of broadleaved evergreen Mediterranean forest vegetation to fire disturbance during the Holocene: insights from the peri-Adriatic region. Journal of Biogeography 36, (2009). 314326.Google Scholar
Connor, S.E., Araújo, J., van der Knaap, W.O., and van Leeuwen, J.F.N. A long-term perspective on biomass burning in the Serra da Estrela, Portugal. Quaternary Science Reviews 55, (2012). 114124.Google Scholar
Costa, M., Morla, C., and Sáinz, H. Los bosques ibéricos. Una interpretación geobotánica. (1997). Planeta, Barcelona.Google Scholar
Davis, B.A.S., and Stevenson, A.C. The 8.2 ka event and Early–Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain. Quaternary Science Reviews 26, (2007). 16951712.Google Scholar
Denton, G.H., Broecker, W., and Alley, R.B. The mystery interval 17.5 to 14.5 kyr ago. Brigham-Grette, J., Kull, C., Kiefer, T. PAGES News 14, (2006). 1416.Google Scholar
Domergue, C., and Herail, G. Mines d'or romaines d'Espagne: le district de la Valduerna (León). Publications de l'Université de Toulouse-Le Mirail, Série B Tome IV, (1978). Université de Toulouse-Le Mirail, Toulouse.Google Scholar
Esteban-Parra, M.J., Rodrigo, F.S., and Castro-Díez, Y. Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. International Journal of Climatology 18, (1998). 15571574.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. 4th edition (1989). Wiley, Chichester, UK.Google Scholar
Fernández Manzano, P. El territorio astur antes de la llegada de los romanos. Actas del I Congreso Internacional Astorga romana. (1986). 1336.Google Scholar
Finsinger, W., and Tinner, W. Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors. The Holocene 15, (2005). 293297.Google Scholar
Fletcher, W.J., Debret, M., and Sánchez Goñi, M.F. Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies. The Holocene 23, (2013). 153166.Google Scholar
Franco-Múgica, F., García-Antón, M., and Sainz-Ollero, H. Vegetation dynamics and human impact in the Sierra de Guadarrama, Central System, Spain. The Holocene 8, (1998). 6982.Google Scholar
Franco-Múgica, F., García-Antón, M., Maldonado, J., Morla, C., and Sainz-Ollero, H. The Holocene history of Pinus forests in the Spanish Northern Meseta. The Holocene 11, (2001). 343358.Google Scholar
Franco-Múgica, F., García-Antón, M., Maldonado-Ruiz, J., Morla-Juaristi, C., and Sainz-Ollero, H. Ancient pine forest on inland dunes in the Spanish northern meseta. Quaternary Research 63, (2005). 114.Google Scholar
García-Antón, M., Franco, F., Maldonado, J., Morla, C., and Sainz, H. Una secuencia polínica. en Quintana Redonda (Soria). Evolución holocena del tapiz vegetal en el Sistema Ibérico septentrional. Anales del Jardin Botánico de Madrid 52, (1995). 187195.Google Scholar
García-Antón, M., Franco-Múgica, F., Morla-Juaristi, C., and Maldonado-Ruiz, J. The biogeographical role of Pinus forests on the Northern Spanish Meseta: a new Holocene sequence. Quaternary Science Reviews 30, (2011). 757768.Google Scholar
García-Rovés, E. Dinámica. de la Paleovegetación y cambios climáticos durante el Tardiglaciar y Holoceno en secuencias sedimentarias de la provincia de León. (PhD dissertation) (2007). Universidad de León, Google Scholar
Gil-Romera, G., Carrión, J.S., Pausas, J.G., Sevilla-Callejo, M., Lamb, H.F., Fernández, S., and Burjachs, F. Holocene fire activity and vegetation response in South-Eastern Iberia. Quaternary Science Reviews 29, (2010). 10821092.Google Scholar
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Jalut, G., García-Ruiz, J.M., Martí-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T., and Dedoubat, J.J. Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quaternary Research 66, (2006). 3852.Google Scholar
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Morellón, M., Navas, A., Machín, J., and Delgado-Huertas, A. Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Late Glacial period: Saline lake records. Palaeogeography, Palaeoclimatology, Palaeoecology 259, (2008). 157181.Google Scholar
Grimm, E.C. A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computer Geosciences 13, (1987). 1335.Google Scholar
Heegard, E., Birks, H.J.B., and Telford, R.J. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15, (2005). 612618.Google Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., and Brown, T.A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79, (2009). 201219.Google Scholar
Hoek, W.Z., Yu, Z.C., and Lowe, J.J. INTegration of Ice-core, Marine, and TErrestrial records (INTIMATE): refining the record of the Last Glacial–Interglacial transition. Quaternary Science Reviews 27, (2008). 15.Google Scholar
Iriarte, M.J., Muñoz Sobrino, C., Ramil Rego, P., and Rodríguez Guitián, M. Análisis palinológico de la turbera de San Mamés de Abar (Burgos). Fombella, M.A., Fernández, D., and Valencia, R.M. Palinología: Diversidad y Aplicaciones. (2001). Secretariado de Publicaciones, Universidad de León, León. 8793.Google Scholar
Iriarte-Chiapusso, M.J., ramil-Rego, P., and Muñoz-Sobrino, C. El registro postglaciar de dos turberas situadas en el norte de la provincia de Burgos. Polen 13, (2003). 5568.Google Scholar
Jalut, G., Turu i Michels, V., Dedoubat, J.-J., Otto, T., Ezquerra, J., Fontugne, M., Belet, J.M., Bonnet, L., García de Celis, A., Redondo-Vega, J.M., Vidal-Romaní, J.R., and Santos, L. Palaeoenvironmental studies in NW Iberia (Cantabrian range): vegetation history and synthetic approach of the last deglaciation phases in the western Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 297, (2010). 330350.Google Scholar
Kutzbach, J.E., Webb, T. III Conceptual basis for understanding late-Quaternary climates. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., and Bartlein, P.J. Global Climates since the Last Glacial Maximum. (1993). University of Minnesota Press, Minneapolis. 511.Google Scholar
Larrén, H. Las tierras de Benavente a la luz de la arqueología. Regnum: Corona y Cortes en Benavente (1202–2002). (2002). Instituto de Estudios Zamoranos “Florián de Ocampo” y Excmo Ayto. de Benavente, Benavente. 119133.Google Scholar
López Sáez, J.A. Historia de la vegetación en la comarca. de Villafáfila durante el Holoceno reciente. Abarquero Moras, F.J., Guerra Doce, E., Delibes de Castro, G., Palomino Lázaro, A.L., and del Val Recio, J.M. Arqueología de la Sal en las Lagunas de Villafáfila (Zamora): Investigaciones sobre los cocederos prehistóricos. Investigaciones Arqueológicas en Castilla y León, Monografías 9, (2012). Junta de Castilla y León, Valladolid. 369379.Google Scholar
López-Merino, L., Martínez Cortizas, A., and López-Sáez, J.A. Early agriculture and palaeoenvironmental history in the North of the Iberian Peninsula: a multi-proxy analysis of the Monte Areo mire (Asturias, Spain). Journal of Archaeological Science 37, (2010). 19781988.Google Scholar
López-Merino, L., Silva Sánchez, N., Kaal, J., López-Sáez, J.A., and Martínez Cortizas, A. Post-disturbance vegetation dynamics during the Late Pleistocene and the Holocene: an example from NW Iberia. Global and Planetary Change 92–93, (2012). 5870.Google Scholar
Lorrio, A.J., and Ruiz Zapatero, G. The Celts in Iberia: an overview. E-Keltoi 6, (2005). 167254.Google Scholar
Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., and Yu, Z.C. Synchronisation of palaeoenvironmental events in the North Atlantic region during the last termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, (2008). 617.CrossRefGoogle Scholar
Magny, M., Peyron, O., Sadori, L., Ortu, E., Zanchetta, G., Vannière, B., and Tinner, W. Constrasting patterns of seasonality during the Holocene in the south- and north-central Mediterranean. Journal of Quaternary Science 27, (2012). 290296.Google Scholar
Maldonado, J. Evolución Tardiglaciar y Holocena de la vegetación en los macizos del Noroeste Peninsular. (PhD Dissertation) (1994). Universidad Politécnica de Madrid, Madrid.Google Scholar
Martín-Puertas, C., Valero-Garcés, B.L., Mata, P., González-Sampériz, P., Bao, R., Moreno, A., and Stefanova, V. Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba. The Holocene 18, (2008). 907921.Google Scholar
Médail, F., and Quézel, P. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden 84, (1997). 112127.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. Pollen Analysis. (1991). Blackwell Scientific Publications, Oxford, UK.Google Scholar
Morales-Molino, C., García Antón, M., and Morla, C. Late Holocene vegetation dynamics on an Atlantic-Mediterranean mountain in NW Iberia. Palaeogeography, Palaeoclimatology, Palaeoecology 302, (2011). 323337.Google Scholar
Morales-Molino, C., Postigo-Mijarra, J.M., Morla, C., and García-Antón, M. Long-term persistence of Mediterranean pine forests in the Duero Basin (central Spain) during the Holocene: The case of Pinus pinaster Aiton. The Holocene 22, (2012). 561570.Google Scholar
Morales-Molino, C., García-Antón, M., Postigo-Mijarra, J.M., and Morla, C. Holocene vegetation, fire and climate interactions on the westernmost fringe of the Mediterranean Basin. Quaternary Science Reviews 59, (2013). 517.Google Scholar
Morellón, M., Valero-Garcés, B., Vegas-Vilarrúbia, T., González-Sampériz, P., Romero, Ó., Delgado-Huertas, A., Mata, P., Moreno, A., Rico, M., and Corella, J.P. Lateglacial and Holocene palaeohydrology in the western Mediterranean región: the lake Estanya record (NE Spain). Quaternary Science Reviews 28, (2009). 25822599.Google Scholar
Morellón, M., Valero-Garcés, B., González-Sampériz, P., Vegas-Vilarrúbia, T., Rubio, E., Rieradevall, M., Delgado-Huertas, A., Mata, P., Romero, Ó., Engstrom, D.R., López-Vicente, M., Navas, A., and Soto, J. Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. Journal of Paleolimnology 46, (2011). 423452.Google Scholar
Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E., and Edwards, R.L. A speleothem record of glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change 71, (2010). 218231.Google Scholar
Moreno, A., López-Merino, L., Leira, M., Marco-Barba, J., González-Sampériz, P., Valero-Garcés, B.L., López-Sáez, J.A., Santos, L., Mata, P., and Ito, E. Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). Journal of Paleolimnology 46, (2011). 327349.Google Scholar
Moreno, A., González-Sampériz, P., Morellón, M., Valero-Garcés, B.L., and Fletcher, W.J. Northern Iberian abrupt climate change dynamics during the last glacial cycle: a view from lacustrine sediments. Quaternary Science Reviews 36, (2012). 139153.Google Scholar
Muñoz Sobrino, C. Cambio climático y dinámica. del paisaje en las montañas del noroeste de la península Ibérica. (PhD dissertation) (2001). Universidade de Santiago de Compostela, Santiago de Compostela, Spain.Google Scholar
Muñoz Sobrino, C., Ramil-Rego, P., Delibes de Castro, G., and Rojo Guerra, M. Datos paleobotánicos sobre la turbera de La Piedra (Páramo de Tozo, Burgos). Ramil-Rego, P., Fernández, C., and Rodríguez Guitián, M. Biogeografía Pleistocena-Holocena de la península Ibérica. (1996). Consellería de Cultura de la Xunta de Galicia, Santiago de Compostela. 149162.Google Scholar
Muñoz Sobrino, C., Ramil-Rego, P., and Rodríguez Guitián, M. Upland vegetation in the north-west Iberian peninsula after the last glaciation: forest history and deforestation dynamics. Vegetation History and Archaeobotany 6, (1997). 215233.CrossRefGoogle Scholar
Muñoz Sobrino, C., Ramil-Rego, P., and Rodríguez Guitián, M.A. Vegetation in the mountains of northwest Iberia during the last glacial–interglacial transition. Vegetation History and Archaeobotany 10, (2001). 721.Google Scholar
Muñoz Sobrino, C., Ramil-Rego, P., and Gómez-Orellana, L. Vegetation of the Lago de Sanabria area (NW Iberia) since the end of the Pleistocene: a palaeoecological reconstruction on the basis of two new pollen sequences. Vegetation History and Archaeobotany 13, (2004). 122.CrossRefGoogle Scholar
Muñoz Sobrino, C., Ramil-Rego, P., and Gómez-Orellana, L. Late Würm and early Holocene in the mountains of northwest Iberia: biostratigraphy, chronology and tree colonization. Vegetation History and Archaeobotany 16, (2007). 223240.Google Scholar
Muñoz Sobrino, C., Heiri, O., Hazekamp, M., van der Velden, D., Kirilova, E.P., García-Moreiras, I., and Lotter, A.F. New data on the Lateglacial period of SW Europe: a high resolution multiproxy record from Laguna de la Roya (NW Iberia). Quaternary Science Reviews 80, (2013). 5877.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., and Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, (2000). 853858.CrossRefGoogle ScholarPubMed
Ortiz, J.E., Gallego, J.L.R., Torres, T., Díaz-Bautista, A., and Sierra, C. Palaeoenvironmental reconstruction of Northern Spain during the last 8000 cal yr BP based on the biomarker content of the Roñanzas peat bog (Asturias). Organic Geochemistry 41, (2010). 454466.Google Scholar
Oswald, W.W., Anderson, P.M., Brown, T.A., Brubaker, L.B., Hu, F.S., Lozhkin, A.V., Tinner, W., and Kaltenrieder, P. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene 15, (2005). 758767.Google Scholar
Parker, N.E., and Williams, J.W. Influences of climate, cattle density, and lake morphology on Sporormiella abundances in modern lake sediments in the US Great Plains. The Holocene 22, (2012). 475483.Google Scholar
Pausas, J.G., Llovet, J., Rodrigo, A., and Vallejo, R. Are wildfires a disaster in the Mediterranean basin? — A review. International Journal of Wildland Fire 17, (2008). 713723.Google Scholar
Peñalba, M.C., Maurice, A., Guiot, J., Duplessy, J.C., and de Beaulieu, J.L. Termination of the last glaciation in the Iberian Peninsula inferred from the pollen sequence of Quintanar de la Sierra. Quaternary Research 48, (1997). 205214.CrossRefGoogle Scholar
Pérez-Sanz, A., González-Sampériz, P., Moreno, A., Valero-Garcés, B., Gil-Romera, G., Rieradevall, M., Tarrats, P., Lasheras-Álvarez, L., Morellón, M., Belmonte, A., Sancho, C., Sevilla-Callejo, M., and Navas, A. Holocene climate variability, vegetation dynamics and fire regime in the central Pyrenees: the Basa de la Mora sequence (NE Spain). Quaternary Science Reviews 73, (2013). 149169.Google Scholar
Pons, A., and Reille, M. The Holocene and Upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeography, Palaeoclimatology, Palaeoecology 66, (1988). 243263.Google Scholar
Postigo-Mijarra, J.M., Morla, C., Barrón, E., Morales-Molino, C., and García, S. Patterns of extinction and persistence of Arctotertiary flora in Iberia during the Quaternary. Review of Palaeobotany and Palynology 162, (2010). 416426.Google Scholar
Power, M.J., Marlon, J., Ortiz, N. et al. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics 30, (2008). 887907.Google Scholar
Punt, W. et al. The Northwest European Pollen Flora vol. I (1976), vol. II (1980), vol. III (1981), vol. IV (1984), vol. V (1988), vol. VI (1991), vol. VII (1996), vol. VIII (2003), vol. IX (2009). (1976–2009). Elsevier, Amsterdam.Google Scholar
Ramil Rego, P., and Aira Rodríguez, M.J. Estudio palinológico de la turbera de Pena Veira (Lugo). Anales del Real Jardín Botánico de Madrid 51, (1993). 111122.Google Scholar
Reed, J.M., Stevenson, A.C., and Juggins, S. A multi-proxy record of Holocene climatic change in southwest Spain: the Laguna de Medina, Cádiz. The Holocene 11, (2001). 707719.Google Scholar
Reille, M. Pollen et Spores d'Europe et d'Afrique Du Nord. (1992). Laboratoire de botanique historique et palynologie, Marseille, France.Google Scholar
Reille, M. Pollen et Spores d'Europe et d'Afrique Du Nord, Supplement 1. (1995). Laboratoire de botanique historique et palynologie, Marseille, France.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal. BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Renssen, H., Seppä, H., Heiri, O., Roche, D.M., Goosse, H., and Fichefet, T. The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience 2, (2009). 411414.Google Scholar
Ruiz Zapata, M.B., Gil, M.J., Dorado, M., Valdeolmillos, A., Vegas, J., and Pérez González, A. Clima y vegetación durante el Tardiglaciar y el Holoceno en la Sierra de Neila (Sistema Ibérico Noroccidental). Cuaternario y Geomorfología 16, (2002). 920.Google Scholar
Seppä, H., and Bennett, K.D. Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology. Progress in Physical Geography 27, (2003). 548579.Google Scholar
Sjögren, P., van der Knaap, W.O., van Leeuwen, J.F.N., Andric, M., and Grünig, A. The occurrence of an upper decomposed peat layer, or “kultureller Trockenhorizont”, in the Alps and Jura Mountains. Mires and Peat 2, (2007). 114. (Article 05) Google Scholar
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, (1971). 615621.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230. (CALIB 6.0 radiocarbon calibration program is available online on: http://intcal.qub.ac.uk/calib/)Google Scholar
Telford, R.J., Heegaard, E., and Birks, H.J.B. The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14, (2004). 296298.Google Scholar
Tinner, W., and Hu, F.S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. The Holocene 13, (2003). 499505.Google Scholar
Tinner, W., Conedera, M., Ammann, B., Gaggeler, H.W., Gedye, S., Jones, R., and Sagesser, B. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. The Holocene 8, (1998). 3142.Google Scholar
Tinner, W., Conedera, M., Gobet, E., Hubschmid, P., Wehrli, M., and Ammann, B. A palaeoecological attempt to classify fire sensitivity of trees in the southern Alps. The Holocene 10, (2000). 565574.Google Scholar
Tinner, W., van Leeuwen, J.F.N., Colombaroli, D., Vescovi, E., van der Knaap, W.O., Henne, P.D., Pasta, S., D'Angelo, S., and La Mantia, T. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quaternary Science Reviews 28, (2009). 14981510.Google Scholar
Valero-Garcés, B.L., González-Sampériz, P., Delgado-Huertas, A., Navas, A., Machín, J., and Kelts, K. Lateglacial and Late Holocene environmental and vegetational change in Salada Mediana, central Ebro Basin, Spain. Quaternary International 73, 74 (2000). 2946.Google Scholar
van der Knaap, W.O., and van Leeuwen, J.F.N. Holocene vegetation succession and degradation as responses to climatic change and human activity in the Serra da Estrela, Portugal. Review of Palaeobotany and Palynology 89, (1995). 153211.Google Scholar
van der Knaap, W.O., and van Leeuwen, J.F.N. Late Glacial and early Holocene vegetation succession, altitudinal vegetation zonation, and climatic change in the Serra da Estrela, Portugal. Review of Palaeobotany and Palynology 97, (1997). 239285.Google Scholar
van Geel, B., Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., van Reenen, G., and Hakbijl, T. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, (2003). 873883.Google Scholar
van Mourik, J.M. Pollen profiles of slope deposits in the Galiciana rea (NW Spain). Nederlandse Geografische Studies 12, (1986). 1171.Google Scholar
Vannière, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., and Magny, M. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27, (2008). 11811196.Google Scholar
Vannière, B., Power, M.J., Roberts, N., Tinner, W., Carrión, J., Magny, M., Bartlein, P., Colombaroli, D., Daniau, A.L., Finsinger, W., Gil-Romera, G., Kaltenrieder, P., Pini, R., Sadori, L., Turner, R., Valsecchi, V., and Vescovi, E. Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). The Holocene 21, (2011). 5373.Google Scholar
Zapata, L., Peña-Chocarro, L., Pérez-Jordá, G., and Stika, H.-P. Early Neolithic Agriculture in the Iberian Peninsula. Journal of World Prehistory 18, (2004). 283325.Google Scholar
Supplementary material: File

Morales-Molino and García-Antón supplementary material

Supplementary Material

Download Morales-Molino and García-Antón supplementary material(File)
File 1.5 KB