Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T15:56:44.642Z Has data issue: false hasContentIssue false

Variability of 14C reservoir age and air–sea flux of CO2 in the Peru–Chile upwelling region during the past 12,000 years

Published online by Cambridge University Press:  20 January 2017

Matthieu Carré*
Affiliation:
Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, place Eugène Bataillon, 34095 Montpellier, France
Donald Jackson
Affiliation:
Departamento de Antropología, FACSO, Universidad de Chile, Ignacio Carrera Pinto 1045, Ñuñoa, Santiago, Chile
Antonio Maldonado
Affiliation:
Centro de Estudios Avanzados en Zonas Aridas (CEAZA), Universidad de La Serena, Casilla 599, La Serena, Chile
Brian M. Chase
Affiliation:
Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, place Eugène Bataillon, 34095 Montpellier, France
Julian P. Sachs
Affiliation:
School of Oceanography, University of Washington, Box 355351, Seattle, WA 98195, USA
*
Corresponding author. E-mail address:[email protected] (M. Carré).

Abstract

The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile (~ 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air–sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air–sea carbon flux in this region.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakun, A., (1990). Global warming change and intensification of coastal ocean upwelling.. Science 247, 198201.Google Scholar
Butzin, M., Prange, M., Lohmann, G., (2012). Readjustment of glacial radiocarbon chronologies by self-consistent three-dimensional ocean circulation modeling.. Earth and Planetary Science Letters 317–318, 177184.Google Scholar
Carré, M., (2005). "Etude géochimique et sclérochronologique de coquilles de bivalves marins: paléocéanographie de la côtesud du Pérou à l'Holocèneinférieur et implications archéologiques".. Unpublished PhD thesis, Université Montpellier.2, .Google Scholar
Carré, M., Bentaleb, I., Fontugne, M., Lavallée, D., (2005). Strong El Niño events during the early Holocene: stable isotope evidence from Peruvian sea-shells.. The Holocene 15, 4247.Google Scholar
Carré, M., Azzoug, M., Bentaleb, I., Chase, B.M., Fontugne, M., Jackson, D., Ledru, M.-P., Maldonado, A., Sachs, J.P., Schauer, A.J., (2012). Mid-Holocene mean climate in the south-eastern Pacific and its influence on South America.. Quaternary International 253, 5566.CrossRefGoogle Scholar
Carré, M., Sachs, J.P., Purca, S., Schauer, A.J., Braconnot, P., Angeles Falcón, R., Julien, M., Lavallée, D., (2014). Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific.. Science 345, 10451048.CrossRefGoogle ScholarPubMed
Chavez, F.P., Bertrand, A., Guevara-Carrasco, R., Soler, P., Csirke, J., (2008). The northern Humboldt Current System: Brief history, present status and a view towards the future.. Progress In Oceanography 79, 95105.Google Scholar
De Pol-Holz, R., Keigwin, L., Southon, J., Hebbeln, D., Mohtadi, M., (2010). No signature of abyssal carbon in intermediate waters off Chile during deglaciation.. Nature Geoscience 3, 192195.Google Scholar
Fontugne, M., Carré, M., Bentaleb, I., Julien, M., Lavallée, D., (2004). Radiocarbon reservoir age variations in the south Peruvian upwelling during the Holocene.. Radiocarbon 46, 531537.Google Scholar
Friederich, G.E., Ledesma, J., Ulloa, O., Chavez, F.P., (2008). Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific.. Progress in Oceanography 79, 156166.Google Scholar
García-Reyes, M., Largier, J., (2010). Observations of increased wind-driven coastal upwelling off central California.. Journal of Geophysical Research, Oceans 115, C04011.Google Scholar
Gutiérrez, D., Bouloubassi, I., Sifeddine, A., Purca, S., Goubanova, K., Graco, M., Field, D., Méjanelle, L., Velazco, F., Lorre, A., Salvatecci, R., Quispe, D., Vargas, G., Dewitte, B., Ortlieb, L., (2011). Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century.. Geophysical Research Letters 38, .Google Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, C.S.M., Zimmerman, S.R.H., (2013). SHCal13 Southern Hemisphere Calibration, 0–50,000 years cal BP.. Radiocarbon 55, 115.Google Scholar
Hua, Q., Webb, G.E., Zhao, J.X., Nothdurft, L.D., Lybolt, M., Price, G.J., Opdyke, B.N., (2015). Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes.. Earth and Planetary Science Letters 422, 3344.Google Scholar
Ingram, B.L., Southon, J.R., (1996). Reservoir ages in eastern Pacific coastal and estuarine waters.. Radiocarbon 38, 573582.Google Scholar
Jackson, D., (2002). Cazadores y recolectores del holocenomedio del nortesemiárido de Chile. Universidad de Chile, (Tesis para optar el grado de Magíster en Arqueología).Google Scholar
Jones, K.B., Hodgins, G.W.L., Dettman, D.L., Andrus, C.F.T., Nelson, A., Etayo-Cadavid, M.F., (2007). Seasonal variations in Peruvian marine reservoir age from pre-bomb Argopectenpurpuratus shell carbonate.. Radiocarbon 49, 877888.Google Scholar
Jones, K.B., Hodgins, G.W.L., Etayo-Cadavid, M.F., Andrus, C.F.T., Sandweiss, D.H., (2010). Centuries of marine radiocarbon reservoir age variation within archaeological Mesodesmadonacium shells from southern Peru.. Radiocarbon 52, 12071214.Google Scholar
Kennett, D.J., Ingram, B.L., Southon, J.R., Wise, K., (2002). Differences in 14C age between stratigraphically associated charcoal and marine shell from the archaic period site of kilometer 4, southern Peru: old wood or old water?.. Radiocarbon 44, 5358.Google Scholar
Key, R.M., Kozyr, A., Sabine, C.L., Lee, K., Wanninkhof, R., Bullister, J.L., Feely, R.A., Millero, F.J., Mordy, C., Peng, T.H., (2004). A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP).. Global Biogeochemical Cycles 18, GB4031.Google Scholar
Kim, J.-H., Schneider, R.R., Hebbeln, D., Müller, P.J., Wefer, G., (2002). Last deglacialsea–surface temperature evolution in the Southeast Pacific the South American continent.. Quaternary Science Reviews 21, 20852097.Google Scholar
Laruelle, G.G., Dürr, H.H., Slomp, C.P., Borges, A.V., (2010). Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves.. Geophysical Research Letters 37, L15607.Google Scholar
Lueker, T.J., Dickson, A.G., Keeling, C.D., (2000). Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium.. Marine Chemistry 70, 105119.CrossRefGoogle Scholar
McGregor, H.V., Dima, M., Fischer, H.W., Mulitza, S., (2007). Rapid 20th-Century Increase in Coastal Upwelling off Northwest Africa.637639.Google Scholar
Méndez, C.A., Jackson, D.G., (2004). Ocupaciones humanas del Holocenotardío en Los Vilos (IV Región, Chile): origen y característicasconductuales de la población local de cazadoresrecolectores de litoral.. Chungará Revista de Antropología Chilena 36, 279293.Google Scholar
Méndez, C.A., Jackson, D.G., (2006). Causalidad o concurrencia, relaciones entre cambiosambientales y sociales en los cazadoresrecolectoresdurante la transición entre el Holocenomedioytardío (coasta del semiárido de Chile).. Chungará Revista de Antropología Chilena 38, 172184.Google Scholar
Monnin, E., Steig, E.J., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer, B., Stocker, T.F., Morse, D.L., Barnola, J.-M., Bellier, B., Raynaud, D., Fischer, H., (2004). Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores.. Earth and Planetary Science Letters 224, 4554.Google Scholar
Narayan, N., Paul, A., Mulitza, S., Schulz, M., (2010). Trends in coastal upwelling intensity during the late 20th century.. Ocean Science 6, 815823.Google Scholar
Ortlieb, L., Vargas, G., Saliège, J.-F., (2011). Marine radiocarbon reservoir effect along the northern Chile-southern Peru coast (14–24°S) throughout the Holocene.. Quaternary Research 75, 91103.Google Scholar
Owen, B.D., (2002). Marine carbon reservoir age estimates for the far south coast of Peru.. Radiocarbon 44, 701708.Google Scholar
Paulmier, A., Ruiz-Pino, D., Garcon, V., (2008). The oxygen minimum zone (OMZ) off Chile as intense source of CO2 and N2O.. Continental Shelf Research 28, 27462756.Google Scholar
Petchey, F., Ulm, S., (2012). Marine reservoir variation in the Bismarck region: an evaluation of spatial and temporal change in ΔR and R over the last 3000 years.54, 4558.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP.. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rodgers, K.B., Aumont, O., Madec, G., Menkes, C., Blanke, B., Monfray, P., Orr, J.C., Schrag, D.P., (2004). Radiocarbon as a thermocline proxy for the eastern equatorial Pacific.. Geophysical Research Letters 31, L14314.Google Scholar
Russell, N., Cook, G.T., Ascough, P.L., Scott, E.M., Dugmore, A.J., (2011). Examining the inherent variability in ΔR: new methods of presenting ΔR values and implications for MRE studies.. Radiocarbon 53, .Google Scholar
Sadler, J., Carré, M., Azzoug, M., Schauer, A.J., Ledesma, J., Cardenas, F., Chase, B.M., Bentaleb, I., Muller, S.D., Mandeng, M., Rohling, E.J., Sachs, J.P., (2012). Reconstructing past upwelling intensity and the seasonal dynamics of primary productivity along the Peruvian coastline from mollusk shell stable isotopes.. Geochemistry, Geophysics, Geosystems 13, Q01015.CrossRefGoogle Scholar
Siani, G., Michel, E., De Pol-Holz, R., DeVries, T., Lamy, F., Carel, M., Isguder, G., Dewilde, F., Lourantou, A., (2013). Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation.. Nature Communications 4, .Google Scholar
Silva, N., Rojas, N., Fedele, A., (2009). Water masses in the Humboldt Current System: properties, distribution, and the nitrate deficit as a chemical water mass tracer for equatorial subsurface water off Chile.. Deep Sea Research Part II: Topical Studies in Oceanography 56, 10041020.Google Scholar
Southon, J.R., Oakland Rodman, A., True, D., (1995). A comparison of marine and terrestrial radiocarbon ages from northern Chile.. Radiocarbon 37, 389393.Google Scholar
Strub, P.T., Mesias, J.M., Montecino, V., Rutllant, J., Salinas, S., (1998). Coastal ocean circulation off western South America.Robinson, A.R., Brink, K.H. The Global Coastal Ocean. Regional Studies and Syntheses. Wiley, New York.273315.Google Scholar
Stuiver, M., Polach, H.A., (1977). Discussion; reporting of C-14 data.. Radiocarbon 19, 355363.Google Scholar
Tarifeño, E, (1980). “Studies on the BIology of Surf Clam.Mesodesmadonacium (Lamarck, 1818) (Bivalvia: Mesodesmatidae) from Chilean Sandy Beaches.” Unpublished PhD thesis, University of California.Google Scholar
Taylor, R.E., Berger, R., (1967). Radiocarbon content of marine shells from the Pacific coasts of Central and South America.. Science 158, 11801182.Google Scholar
Toggweiler, J.R., Dixon, K., Broecker, W.S., (1991). The Peru upwelling and the ventilation of the South Pacific thermocline.. Journal of Geophysical Research 96, 20,46720,497.Google Scholar
Torres, R., Pantoja, S., Harada, N., González, H.E., Daneri, G., Frangopulos, M., Rutllant, J.A., Duarte, C.M., Rúiz-Halpern, S., Mayol, E., Fukasawa, M., (2011). Air–sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords.. Journal of Geophysical Research, Oceans 116, C09006.Google Scholar
van Beek, P., Reyss, J.-L., Paterne, M., Gersonde, R., van der Loeff, M.R., Kuhn, G., (2002). 226Ra in barite: absolute dating of Holocene Southern Ocean sediments and reconstruction of sea–surface reservoir ages.. Geology 30, 731734.Google Scholar
Wang, D., Gouhier, T.C., Menge, B.A., Ganguly, A.R., (2015). Intensification and spatial homogenization of coastal upwelling under climate change.. Nature 518, 390394.Google Scholar
Ward, G.K., Wilson, S.R., (1978). Procedures for comparing and combining radiocarbon age determinations: a critique.. Archaeometry 20, 1931.Google Scholar
Weiss, R.F., (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas.. Marine Chemistry 2, 203215.Google Scholar