Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T09:15:11.550Z Has data issue: false hasContentIssue false

U-Series Dating by the TIMS Technique of Land Snails from Paleosols in the Canary Islands

Published online by Cambridge University Press:  20 January 2017

Claude Hillaire-Marcel
Affiliation:
Centre de recherche en géochimie isotopique et en géochronologie (GEOTOP), Université du Québec à Montréal, Boíte postale 8888, succursale "Centre-Ville," Montréal, Québec, H3C 3P8, Canada
Bassam Ghaleb
Affiliation:
Centre de recherche en géochimie isotopique et en géochronologie (GEOTOP), Université du Québec à Montréal, Boíte postale 8888, succursale "Centre-Ville," Montréal, Québec, H3C 3P8, Canada
Clément Gariépy
Affiliation:
Centre de recherche en géochimie isotopique et en géochronologie (GEOTOP), Université du Québec à Montréal, Boíte postale 8888, succursale "Centre-Ville," Montréal, Québec, H3C 3P8, Canada
Cari Zazo
Affiliation:
Museo nacional de Ciencias naturales, José Gutierrez Abascal, 2, 28006 Madrid, Spain
Manolo Hoyos
Affiliation:
Museo nacional de Ciencias naturales, José Gutierrez Abascal, 2, 28006 Madrid, Spain
Jose-Luis Goy
Affiliation:
Departamento de Geologia, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain

Abstract

A sequence of seven superimposed paleosols developed on eolian calcarenites and alluvium was sampled on the island of Lanzarote in order to examine the possibility of dating land snail shells by the U-series method, using a TIMS technique allowing measurement of U and Th isotopes in very small samples. In the lower six units, the fossil shells yielded D-allo/L-isoleucine (A/I) ratios of about 0.5 and apparent AMS 14C ages ranging from 41,000 to 34,000 yr B.P., indicating that most paleosols formed during a relatively short mid-Würm humid episode. The upper unit (paleosol 7) yielded more variable A/I ratios (ranging from 0.6 to 0.2) and a younger 14C age ∼27,000 yr B.P. Most samples contained enough U to allow the calculation of U-series ages, after correction for the presence of a detrital component. In samples containing a few tens of ppb of U (paleosols 1, 2, 3, 6, and 7), the ages are strongly dependent upon the model used for the correction. In samples containing more than 300 ppb of U (paleosols 4 and 5), concordant ages of ∼31,000 ± 1000 yr were obtained regardless of the correction model used. U uptake in these shells occurred during one single early diagenetic phase, soon after burial, since shells of modern snails do not contain any significant amount of U. The arid conditions subsequent to the mid-Würm humid episode have likely ensured since then a fair closure of the radioactive system.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanchard, R. L. Cheng, M. H., and Potratz, H. A. (1967). Uranium and thorium series disequilibria in recent and fossil marine molluscan shells. Journal of Geophysical Research 72 , 47454757.Google Scholar
Broecker, W. S. (1963). A preliminary evaluation of uranium series inequilibrium as a tool for absolute age measurement on marine carbonate. Journal of Geophysical Research 68 , 28172834.Google Scholar
Chilakos, P. (1988). 14C, Th/U, amino acid and stable isotope measurements in late Quaternary deposits of Fuerte Ventura, Canary Islands: A critical ap-proach. Memoir MSc, Université du Québec à Montréal, 123 p.Google Scholar
Edwards, R. L. Chen, J. H., and Wasserburg, G. J. (1986/87). 238U-234U-230Th’232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81 , 175192.Google Scholar
Evin, J. Maréchal, J., and Pachiaudi, C. (1980). Conditions involved in dating terrestrial shells. Radiocarbon 22 , 545555.Google Scholar
Ghaleb, B. Hillaire-Marcel, C. Causse, C. Gariépy, C., and Vallières, S. (1990). Th/U recycling and fractionation in a semi-arid endoreic continental depression: The Palmyra Basin, Syria. Geochimîca et Cosmochimica Acta 54 , 10251035.Google Scholar
Goodfriend, G. A. (1992). The use of land snail shells in paleoenvironmental reconstruction. Quaternary Science Reviews 11 , 665685.Google Scholar
Goodfriend, G. A. (1987). Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29 , 159167.Google Scholar
Goodfriend, G. A., and Hood, D. G. (1983). Carbon isotope analysis of land snail shells: Implications for carbon sources and radiocarbon dating. Radiocarbon 25 , 810830.Google Scholar
Goodfriend, G. A., and Magaritz, M, (1987). Carbon and oxygen isotope composition of shell carbonate of desert land snail. Earth and Planetary Science Letters 86 , 377388.Google Scholar
Goodfriend, G. A., and Stipp, J. J. (1983). Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11 , 575577.Google Scholar
Hillaire-Marcel, C. Vallières, S. Ghaleb, B., and Mareschal, J.-C. (1990). Déséquilibres Th/U dans les sols carbonatés en climat subaride; estimation des flux d’uranium et vitesse d’érosion. Le cas du bassin de Palmyre (Syrie). Comptes rendus de VAcadémie des Sciences de Paris 311 , 233238.Google Scholar
Kaufman, A. Ghaleb, B., and Wehmiller, J. F. (1994). U isotope distributions within Mercenaria shells: Geochronometric possibilités. “Abstracts, 5th International Conference on Geochronology, Cosmochronology and Isotope Geology, Berkeley, California.” Google Scholar
Lézine, A.-M., and Casanova, J. (1991). Correlated oceanic and continental records demonstrate past climate and hydrology of North Africa (0-140 ka). Geology 19 , 307310.Google Scholar
Ludwig, K. R. (1993). UISO—A Program for Calculation of 130Th-234U-238U Isochron Ages. U.S. Geological Survey Open-File Report 93-531, 9 p.Google Scholar
Ludwig, K. R. (1991). ISOPLOT—A Plotting and Regression Program for Radiogenic Isotope Data. U.S. Geological Survey Open-File Report 91-445, 45 p.Google Scholar
Ludwig, K. R., and Tilterington, D. M. (1994). Calculation of I,ITh/U isochrons, ages, and errors. Geochimica et Cosmochimica Acta 58 , 50315042.Google Scholar
Luo, S., and Ku, T. L. (1991). U-series isochron dating: A generalized method employing total sample dissolution. Geochimica et Cosmochimica Acta 55 , 555564.Google Scholar
Mazaud, A. Laj, C. Bard, E. Arnold, M., and Trie, E. (1991). Geomagnetic field control of 14C production over the last 80 ky: Implications for the radiocarbon time-scale. Geophysical Research Letters 18 , 18851888.Google Scholar
Petit-Maire, N. Delibrias, G. Meco, J. Pomel, S., and Rosso, J.-C. (1986). Paléoclimatologie des Canaries orientales (Fuerte Ventura). Comptes rendus de ¡’Académie des Sciences de Paris 303 , 12411246.Google Scholar
Rosholt, J. N. (1976). 230Th/234U dating of travertines and caliche rinds. Geological Society of America Abstracts wiifi Program 8 , 1076.Google Scholar
Rosholt, I. N. Doe, B. R., and Tatsumoto, M. (1966). Evolution of the isotopic composition of uranium and thorium in soil profiles. Geological Society of America Bulletin 77 , 9871004.Google Scholar
York, D. (1969). Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5 , 320324.Google Scholar
Zazo, C. Hillaire-Marcel, C. Hoyos, M. Ghaleb, B. Goy, J. L., and Dabrio, C. J. (1993). The Canary Islands, a stop in the migratory way of Strombus bubonius towards the Mediterranean around 200 ka. Subcommission on Mediterranean and Black Sea Shorelines, International Union for Quaternary Research, Newsletter 15 , 711.Google Scholar