Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T16:57:11.915Z Has data issue: false hasContentIssue false

Uranium-Series Ages of Travertines and Timing of the Last Glaciation in the Northern Yellowstone Area, Wyoming-Montana

Published online by Cambridge University Press:  20 January 2017

Neil C. Sturchio
Affiliation:
Argonne National Laboratory, CMT-205, Argonne, Illinois 60439
Kenneth L. Pierce
Affiliation:
U.S. Geological Survey, MS 913, Denver, Colorado 80225
Michael T. Murrell
Affiliation:
Los Alamos National Laboratory, INC-6, Los Alamos, New Mexico 87545
Michael L. Sorey
Affiliation:
U.S. Geological Survey, MS 439, Menlo Park, California 94025

Abstract

Uranium-series age determinations by mass spectrometric methods were done for travertines and associated carbonate veins related to clastic deposits of the last glaciation (Pinedale) in the northern Yellowstone area. Dramatic variations in the hydrologic head are inferred from variations in the elevation of travertine deposition with time and are consistent with the expected hydrologic effects of glaciation. We determine the following chronology of the Pinedale Glaciation, with the key assumption that travertine deposits (and associated carbonate veins) perched high above present thermal springs were deposited when glaciers filled the valley below these perched deposits: (1) the early Pinedale outlet glacier advanced well downvalley between 47,000 and 34,000 yr B.P.; (2) the outlet glacier receded to an interstadial position between 34,000 and 30,000 yr B.P.; (3) an extensive Pinedale ice advance occurred between 30,000 and 22,500 yr B.P.; (4) a major recession occurred between 22,500 and 19,500 yr B.P.; (5) a minor readvance (Deckard Flats) culminated after 19,500 yr B.P.; and (6) recession from the Deckard Flats position was completed before 15,500 yr B.P. This chronology is consistent with the general trend of climatic changes in the northern hemisphere as revealed by recent high-resolution ice-core records from the Greenland ice sheet.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. T., and Day, A. L. (1935) “Hot springs of Yellowstone National Park.” Carnegie Institution of Washington Publication 466.Google Scholar
Andrews, J. T. (1987) The Late Wisconsin glaciation and deglaciation of the Laurentide ice sheet. In “North America and Adjacent Oceans During the Last Deglaciation, The Geology of North America” (Ruddiman, W. F. and Wright, H. E., Eds.), Vol. K-3, pp. 1338. Geological Society of America, Boulder, CO.Google Scholar
Bard, E. Hamelin, B. Fairbanks, R. G. Zindler, A. Mathieu, G., and Arnold, M. (1990). U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 yrs B.P. Nuclear Instruments Methods Physical Research 52, 461468.CrossRefGoogle Scholar
Bargar, K. E. (1978). Geology and thermal history of Mammoth Hot Springs, Yellowstone National Park, Wyoming. U.S. Geological Survey Bulletin 1444.Google Scholar
Bargar, K. E., and Foumier, R. O. (1988). Effects of glacial ice on subsurface temperatures of hydrothermal systems in Yellowstone National Park, Wyoming: Fluid inclusion evidence. Geology 16, 10771080.2.3.CO;2>CrossRefGoogle Scholar
Bloom, A. Broecker, W. S. Chappell, J. M. Matthews, R. K., and Mesolella, K. J. (1974). Quaternary sea level fluctuations on a tectonic coast: New 230Th/234U dates on the Huon Peninsula, New Guinea. Quaternary Research 4, 185205.Google Scholar
Bond, G. Broecker, W. Johnsen, S. McManus, J. Labeyrie, L. Jouzel, J., and Bonani, G. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.CrossRefGoogle Scholar
Broecker, W. S., and Van Donk, J. (1970). Insolation changes, ice volumes, and the 0-18 record in deep sea ice cores. Reviews of Geophysics and Space Physics 8, 169198.CrossRefGoogle Scholar
Chen, J. H. Edwards, R. L., and Wasserburg, G. J. (1986). 238U, 234U, and 232Th in seawater. Earth and Planetary Science Letters 80, 241251.Google Scholar
Chen, J. H. Curran, H. A. White, B., and Wasserburg, G. J. (1991). Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin 103, 8297.Google Scholar
Chen, J. H. Edwards, R. L„ and Wasserburg, G. J. (1986). 238U, 234U, and 232Th in seawater. Earth and Planetary Science Letters 80, 241251.Google Scholar
Colman, S. M., and Pierce, K. L. (1981). “Weathering Rinds on Andesitic and Basaltic Stones as a Quaternary Age Indicator, Western United States.” U.S. Geological Survey Professional Paper 1210.Google Scholar
Dansgaard, W. Johnsen, S. J. Clausen, H. B. Dahl-Jensen, D. Gundestrup, N. S. Hammer, C. U. Hvidberg, C. S. Steffensen, J. P. Sveinbjomsdottir, A. E. Jouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Dorale, J. A. Gonzales, L. A. Reagan, M. K. Pickett, D. A. Murrell, M. T., and Baker, R. G. (1992). A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa. Science 258, 16261630.CrossRefGoogle ScholarPubMed
Edwards, R. L. Chen, J. H., and Wasserburg, G. J. (1986). 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81, 175192.CrossRefGoogle Scholar
Emiliani, C. (1955). Pleistocene temperatures. Journal of Geology 63, 538578.Google Scholar
Emiliani, C. (1972). Quaternary paleotemperatures and the duration of high-temperature intervals. Science 178, 398401.CrossRefGoogle ScholarPubMed
Friedman, I. (1970). Some investigations of the deposition of travertine from hot springs. I. The isotopic chemistry of a travertine depositing spring. Geochimica et Cosmochimica Acta 34, 13031315.Google Scholar
Goldstein, S. J. Murrell, M. T., and Janecky, D. R. (1989). Th and U isotopic systematics of basalts from the Juan de Fuca and Gorda Ridges by mass spectrometry. Earth and Planetary Science Letters 96, 134146.CrossRefGoogle Scholar
Gosse, J. C. Evenson, E. B. Klein, J. Lawn, B. Dezfouly-Aijomandy, B., and Middleton, R. (1993). Application of exposure ages to reconstruct glacial histories at the Pinedale type-locality, Wyoming (abst). EOS, Transactions of the American Geophysical Union 74, 84.Google Scholar
Greenland Ice-Core Project (GRIP) Members (1993). Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203207.Google Scholar
Hays, J. D. Imbrie, J., and Shackleton, N. J. (1976). Variations in Earth’s orbit: Pacemaker of the Ice Ages. Science 194, 11211132.Google Scholar
Imbrie, J. Mix, A. C., and Martinson, D. G. (1993). Milankovitch theory viewed from Devil’s Hole. Nature 363, 531533.Google Scholar
Johnsen, S. J. Clausen, H. B. Dansgaard, W. Fuhrer, K. Gundestrup, N. Hammer, C. U. Iversen, P. Jouzel, J. Stauffer, B., and Steffensen, J. P. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311313.CrossRefGoogle Scholar
Ku, T. L., and Liang, Z. C. (1984). The dating of impure carbonates with decay-series isotopes. Nuclear Instruments and Methods in Physical Research 223, 563571.Google Scholar
Madole, R. F. (1980). Glacial Lake Devlin and the chronology of Pinedale glaciation on the east slope of the Front Range, Colorado. U.S. Geological Survey Open-File Report 80725.Google Scholar
Mazaud, A. Laj, C. Bard, E. Arnold, M., and Trie, E. (1991). Geomagnetic field control of 14C production over the last 80 ka: Implications for the radiocarbon time scale. Geophysical Research Letters 18, 18851888.Google Scholar
Milankovitch, M. M. (1941). “Canon of Insolation and the Ice Age Problem.” Koniglish Serbische Akademie, Beograd. [English translation by the Israel Program for Scientific Translations.] U.S. Department of Commerce and National Science Foundation, Washington, DC.Google Scholar
Nelson, A. R. Millington, A. C. Andrews, J. T., and Nichols, H. (1979). Radiocarbon-dated upper Pleistocene glacial sequence, Fraser Valley, Colorado Front Range. Geology 7, 410414.2.0.CO;2>CrossRefGoogle Scholar
Pierce, K. L. (1973). “Surficial Geologic Map of the Mammoth Quadrangle and Part of the Gardiner Quadrangle, Yellowstone National Park, Wyoming and Montana.” U.S. Geological Survey Miscellaneous Geological Investigations Map 1641.Google Scholar
Pierce, K. L. (1974). “Surficial Geologic Map of the Tower Junction Quadrangle and Part of the Mount Wallace Quadrangle, Yellowstone National Park, Wyoming and Montana.” U.S. Geological Survey Miscellaneous Geological Investigations Map 1647.Google Scholar
Pierce, K. L. (1979). “History and Dynamics of Glaciation in the Northern Yellowstone National Park Area.” U.S. Geological Survey Professional Paper 729-F.Google Scholar
Pierce, K. L. Obradovich, J. D., and Friedman, I. (1976). Obsidian-hydration dating and correlation of Bull Lake and Pinedale Glaciations near West Yellowstone, Montana. Geological Society of America Bulletin 87, 703710.Google Scholar
Porter, S. C. Pierce, K. L., and Hamilton, T. D. (1983). Late Wisconsin glaciation in the western United States. In “Late Quaternary Environments of the United States” (Wright, H. E., Ed.), Vol. 1, pp. 71111. Univ. of Minnesota Press, Minneapolis.Google Scholar
Pursell, V. (1985). “The Petrology and Diagenesis of Pleistocene and Recent TVavertines from Gardiner, Montana, and Yellowstone National Park, Wyoming.” Unpublished M.S. thesis, Univ. Texas, Austin.Google Scholar
Richmond, G. M. (1986a). Stratigraphy and chronology of glaciations in Yellowstone National Park. In “Quaternary Glaciations in the Northern Hemisphere” (Sibrara, V. Bowen, D. Q., and Richmond, G. M., Eds.). Quaternary Science Reviews 5, 8398.Google Scholar
Richmond, G. M. (1986b). Stratigraphy and correlation of glacial deposits of the Rocky Mountains, the Colorado Plateau, and the ranges of the Great Basin. In “Quaternary Glaciations in the Northern Hemisphere” (Sibraa, V. Bowen, D. Q., and Richmond, G. M., Eds.). Quaternary Science Reviews 5, 99127.Google Scholar
Shackleton, N. J. (1967). Oxygen isotope analyses and Pleistocene temperatures, reassessed. Nature 215, 1517.CrossRefGoogle Scholar
Sturchio, N. C. (1990). Radium isotopes, alkaline earth diagenesis, and age determination of travertine from Mammoth Hot Springs, Wyoming, U.S.A. Applied Geochemistry 5, 631640.Google Scholar
Sturchio, N. C., and Binz, C. M. (1988). Uranium-series age determination of calcite veins, VC-1 drill core, Valles caldera, New Mexico. Journal of Geophysical Research 93, 60976102.CrossRefGoogle Scholar
Sturchio, N. C. Murrell, M. T. Pierce, K. L., and Sorey, M. L. (1992). Yellowstone travertines: U-series ages and isotope ratios (C, O, Sr, U). In “Water-Rock Interactions” (Kharaka, Y. and Maest, A., Eds.), Vol. 2, pp. 14271430. Balkema, Rotterdam.Google Scholar
Szabo, B. J., and Rosholt, J. N. (1982). Surficial continental sediments. In “Uranium-Series Disequilibrium: Applications to Environmental Problems” (Ivanovich, M. and Harmon, R. S., Eds.), pp. 246267. Clarendon, Oxford.Google Scholar
Szabo, B. J., and Sterr, H. (1978). Dating caliches from southern Nevada by 230Th/232Th versus 234U/232Th and 234U/232Th versus 238U/232Th isochron-plot method. U.S. Geological Survey Open-File Re-port 78701.Google Scholar
Taylor, K. C. Lamorey, G. W. Doyle, G. A. Alley, R. B. Grootes, P. M. Mayewski, P. A. White, J. W. C., and Barlow, L. K. (1993). The “flickering switch” of late Pleistocene climate change. Nature 361, 432436.CrossRefGoogle Scholar
White, D. E. Fournier, R. O. Muffler, L. J. P., and Truesdell, A. H. (1975). “Physical Results of Research Drilling in Yellowstone National Park, Wyoming.” U.S. Geological Survey Professional Paper 892.Google Scholar
Winograd, I. J. Coplen, T. B. Landwehr, J. M. Riggs, A. C. Ludwig, K. R. Szabo, B. J. Kolesar, P. T., and Revesz, K.. M. (1992). Continuous 500,000-year climate record from vein calcite in Devil’s Hole, Nevada. Science 258, 255260.Google Scholar