Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:56:24.347Z Has data issue: false hasContentIssue false

Upwelling signals in radiocarbon from early 20th-century Peruvian bay scallop (Argopecten purpuratus) shells

Published online by Cambridge University Press:  20 January 2017

Kevin B. Jones*
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona, USA
Gregory W.L. Hodgins
Affiliation:
NSF-Arizona AMS Facility, Tucson, Arizona, USA
Miguel F. Etayo-Cadavid
Affiliation:
Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
C. Fred T. Andrus
Affiliation:
Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
*
Corresponding author: U.S. Geological Survey, 12201 Sunrise Valley Drive, Mail Stop 956, Reston, VA 20192, USA. Fax: +1 703 648 6419. E-mail address:[email protected] (K.B. Jones).

Abstract

We quantified Δ14C, δ18O, and δ13C cycles along ontogeny within four bay scallop (Argopecten purpuratus) shells collected from Callao Bay, Salaverry, and Sechura Bay, Peru following the 1907–1908 non-El Niño years and the 1925–1926 El Niño. Δ14C and δ13C generally covary; Δ14C and δ18O vary inversely. Simultaneous decreases in Δ14C and increases in δ18O in non-El Niño shells are followed by constant Δ14C and gradually decreasing δ18O, which we interpret as evidence for discrete marine upwelling events followed by warming of the initially cold upwelled water. Upwelling changes from El Niño events are detectable with difficulty in mollusk shell Δ14C.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrus, C.F.T., Hodgins, G.W.L., Sandweiss, D.H., and Crowe, D.E. Molluscan radiocarbon as a proxy for El Niño-related upwelling variation in Peru. Geological Society of America Special Paper 395, (2005). 1319.Google Scholar
Bemis, B.E., Spero, H.J., Bijma, J., and Lea, D.W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13, (1998). 150160.Google Scholar
Broecker, W.S., and Peng, T.-L. Gas exchange rates between air and sea. Tellus 26, (1974). 2135.Google Scholar
Cantillanez, M., Avendaño, M., Thouzeau, G., and Le Pennec, M. Reproductive cycles of Argopecten purpuratus (Bivalvia: Pectinidae) in La Rinconada marine reserve (Antofagasta, Chile): response to environmental effects of El Niño and La Niña. Aquaculture 246, (2005). 181195.Google Scholar
Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos, S., Kalin, R.M., Ortlieb, L., and Fontugne, M. Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: potential application to Peruvian paleoceanographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 228, (2005). 425. http://dx.doi.org/10.1016/j.palaeo.2005.03.045Google Scholar
Carré, M., Bentaleb, I., Fontugne, M., and Lavalée, D. Strong El Niño events during the early Holocene: stable isotope evidence from Peruvian sea shells. Holocene 15, (2005). 4247. http://dx.doi.org/10.1191/0959683605h1782rpCrossRefGoogle Scholar
Chauvaud, L., Lorrain, A., Dunbar, R.B., Paulet, Y., Thouzeau, G., Jean, F., Guarini, J., and Mucciarone, D. Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochemistry Geophysics Geosystems 6, (2005). Q08001 http://dx.doi.org/10.1029/2004GC000890CrossRefGoogle Scholar
Clark, G.R.II Mollusk shell: daily growth lines. Science 161, (1968). 800802. http://dx.doi.org/10.1126/science.161.3843.800Google Scholar
Clark, G.R.II Growth lines in invertebrate skeletons. Annual Review of Earth and Planetary Science 2, (1974). 7799. http://dx.doi.org/10.1146/annurev.ea.02.050174.000453CrossRefGoogle Scholar
Culleton, B.J., Kennett, D.J., Ingram, B.L., Erlandson, J.M., and Southon, J.R. Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48, (2006). 387400.Google Scholar
DiSalvo, L.H., Alarcón, E., Martínez, E., and Uribe, E. Progress in mass culture of Chlamys (Argopecten) purpurata (Lamarck, 1819) with notes on its history. Revista Chilena de Historia Natural 57, (1984). 3545.Google Scholar
Druffel, E.R.M. Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophysical Research Letters 8, (1981). 5962.CrossRefGoogle Scholar
Druffel, E.R.M. Bomb radiocarbon in the Pacific: annual and seasonal timescale variations. Journal of Marine Research 45, (1987). 667698.Google Scholar
Druffel, E.R.M., Griffin, S., Hwang, J., Komada, T., Beaupre, S.R., Druffel-Rodriguez, K.C., Santos, G.M., and Southon, J.R. Variability of monthly radiocarbon during the 1760s in coral from the Galapagos Islands. Radiocarbon 46, (2004). 627631.Google Scholar
Fontugne, M., Carré, M., Bentaleb, I., Julien, M., and Lavalée, D. Radiocarbon reservoir age variations in the south Peruvian upwelling during the Holocene. Radiocarbon 46, (2004). 531537.Google Scholar
Gillikin, D.P., Lorrain, A., Meng, L., and Dehairs, F. A large metabolic carbon contribution to the δ 13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta 71, (2007). 29362946. http://dx.doi.org/10.1016/j.gca.2007.04.003Google Scholar
Grottoli, A.G., Gille, S.T., Druffel, E.R.M., and Dunbar, R.B. Decadal timescale shift in the 14C record of a central equatorial Pacific coral. Radiocarbon 45, (2003). 9199.Google Scholar
Guilderson, T.P., and Schrag, D.P. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281, (1998). 240243. http://dx.doi.org/10.1126/science.281.5374.240Google Scholar
Gustafson, L., Showers, W., Kwak, T., Levine, J., and Stoskopf, M. Temporal and spatial variability in stable isotope compositions of a freshwater mussel: implications for biomonitoring and ecological studies. Oecologia 152, (2007). 140150. http://dx.doi.org/10.1007/s00442-006-0633-7Google Scholar
Huyer, A., Smith, R.L., and Paluszkiewicz, T. Coastal upwelling off Peru during normal and El Niño times, 1981–1984. Journal of Geophysical Research 92, (1987). 14,29714,307.Google Scholar
Jones, K.B., Hodgins, G.W.L., Dettman, D., Andrus, C.F.T., Nelson, A., and Etayo-Cadavid, M.F. Seasonal variations in Peruvian marine reservoir age from pre-bomb Argopecten purpuratus shell carbonate. Radiocarbon 49, (2007). 877888.CrossRefGoogle Scholar
Kaplan, A, Cane, M, Kushnir, Y, Clement, A, Blumenthal, M, and Rajagopalan, B. Analyses of global sea surface temperature 1856–1991. Journal of Geophysical Research 103, (1998). 18,56718,590. http://dx.doi.org/10.1029/97JC01736CrossRefGoogle Scholar
Kim, S.T., and O’Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, (1997). 34613475. http://dx.doi.org/10.1016/S0016-7037(97)00169-5Google Scholar
Lorrain, A., Paulet, Y., Chauvaud, L., Dunbar, R.B., Mucciarone, D., and Fontugne, M. δ 13C variation in scallop shells: increasing metabolic carbon contribution with body size?. Geochimica et Cosmochimica Acta 68, (2004). 35093519. 10.016/j.gca.2004.01.025 Google Scholar
Lukas, R. The termination of the Equatorial Undercurrent in the eastern Pacific. Progress in Oceanography 16, (1986). 6390.CrossRefGoogle Scholar
Montgomery, R.B., and Stroup, E.D. Equatorial waters and currents at 150°W in July–August 1952. The Johns Hopkins Oceanographic Studies 1, (1962). 68p Google Scholar
Rodgers, K.B., Aumont, O., Madec, G., Menkes, C., Blanke, B., Monfray, P., Orr, J.C., and Schrag, D.P. Radiocarbon as a thermocline proxy for the eastern equatorial Pacific. Geophysical Research Letters 31, (2004). L14314 http://dx.doi.org/10.1029/2004GL019764Google Scholar
Rollins, H.B., Sandweiss, D.H., Brand, U., and Rollins, J.C. Growth increment and stable isotope analysis of marine bivalves: implications for the geoarchaeological record of El Niño. Geoarchaeology 2, (1987). 181197.Google Scholar
Romanek, C.S., Grossman, E.L., and Morse, J.W. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, (1992). 419430. http://dx.doi.org/10.1016/0016-7037(92)90142-6Google Scholar
Slota, P.J. Jr., Jull, A.J.T., Linick, T.W., and Toolin, L.J. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29, (1987). 303306.Google Scholar
Stotz, W.B., and González, S.A. Abundance, growth, and production of the sea scallop Argopecten purpuratus (Lamarck 1819): bases for sustainable exploitation of natural scallop beds in north-central Chile. Fisheries Research 32, (1997). 173183. http://dx.doi.org/10.1016/S0165-7836(97)00010-6Google Scholar
Stuiver, M., Pearson, G.W., and Braziunas, T.F. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28, (1986). 9801021.Google Scholar
Stuiver, M., and Polach, H.A. Discussion: reporting of 14C data. Radiocarbon 19, (1977). 355363.Google Scholar
Toggweiler, J.R., Dixon, K., and Broecker, W.S. The Peru Upwelling and the ventilation of the South Pacific Thermocline. Journal of Geophysical Research 96, (1991). 20,46720,497.Google Scholar
Wheeler, A.P., Blackwelder, P.L., and Wilbur, K.M. Shell growth in the scallop Argopecten irradians: I. Isotope incorporation with reference to diurnal growth. Biological Bulletin 148, (1975). 472482.Google Scholar
Wolff, M. Population dynamics of the Peruvian scallop Argopecten purpuratus during the El Niño phenomenon of 1983. Canadian Journal of Fisheries and Aquatic Science 44, (1987). 16841691.Google Scholar
Wolff, M., and Mendo, J. Management of the Peruvian bay scallop (Argopecten purpuratus) metapopulation with regard to environmental change. Aquatic Conservation. Marine and Freshwater Ecosystems 10, (2000). 117126. http://dx.doi.org/10.1002/(SICI)1099-0755(200003/04)10:2<117::AID-AQC399>3.0.CO;2-TGoogle Scholar
Wyrtki, K. The horizontal and vertical field of motion in the Peru Current. Bulletin of the Scripps Institute of Oceanography 8, (1963). 313344.Google Scholar
Wyrtki, K. El Niño: the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. Journal of Physical Oceanography 5, (1975). 572584. http://dx.doi.org/10.1175/1520-0485(1975)005 < 0572:ENDTRO > 2.0.CO;2Google Scholar
Supplementary material: File

Jones et al. Supplementary Material

Table S1

Download Jones et al. Supplementary Material(File)
File 74.2 KB