Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T08:41:55.200Z Has data issue: false hasContentIssue false

Uplift and active tectonics of southern Albania inferred from incision of alluvial terraces

Published online by Cambridge University Press:  20 January 2017

J. Carcaillet*
Affiliation:
Laboratoire de Géodynamique des Chaînes Alpines UMR 5025, Grenoble. CNRS, Université Joseph Fourier. Maison des Géosciences, 1381 rue de la Piscine, 38400 Saint Martin d'Hères, France
J.L. Mugnier
Affiliation:
Laboratoire de Géodynamique des Chaînes Alpines UMR 5025, Grenoble. CNRS, Université Joseph Fourier. Maison des Géosciences, 1381 rue de la Piscine, 38400 Saint Martin d'Hères, France Laboratoire de Géodynamique des Chaînes Alpines, Chambéry. Université de Savoie, Bâtiment de Chablais, Campus Scientifique, 73376 Le Bourget du Lac Cedex, France
R. Koçi
Affiliation:
Institute of Geosciences of the Polytechnic University, Tirana, Albania
F. Jouanne
Affiliation:
Laboratoire de Géodynamique des Chaînes Alpines, Chambéry. Université de Savoie, Bâtiment de Chablais, Campus Scientifique, 73376 Le Bourget du Lac Cedex, France
*
*Corresponding author. Fax: +33 4 76 51 40 58. Email Address:[email protected]

Abstract

In Albania, the Osum and Vjoje rivers cross the active graben system and the active frontal thrust system of the Albanides. The effects of climatic and geodynamic forcing on the development of these two rivers were investigated by the means of field mapping, topographic surveying and absolute exposure-age dating. We established the chronology of terraces abandonment from the compilation of new dating (14C and in situ produced 10Be) and previously published data. We identified nine fluvial terraces units developed since Marine Isotope Stage 6 up to historic times. From this reconstituted history, we quantified the vertical uplift on a time scale shorter than the glacial climatic cycle. Regional bulging produces an overall increase of the incision rate from the west to the east that reaches a maximum value of 2.8 m/ka in the hinterland. Local pulses of incision are generated by activation of normal faults. The most active faults have a SW–NE trend and a vertical slip rate ranging from 1.8 to 2.2 m/ka. This study outlines the geodynamic control in the development of rivers flowing through the Albanides on the scale of 103–105ka.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliaj, Sh. Alpine geological evolution of Albania. Albanian Journal of Natural and Technology Sciences 3, (1997). 6981.Google Scholar
Aliaj, S.H., Sulstarova, E., Muço, B., and Koçiu, S. Seismotectonic Map of Albania in scale1:500000. (2000). Archive of Seismological Institute, Tirana (in Albanian).Google Scholar
Asioli, A., Trincardi, F., Lowe, J.J., Ariztegui, D., Langone, L., and Oldfield, F. Sub-millennial scale climatic oscillations in the central Adriatic during the Lateglacial: palaeoceanographic implications. Quaternary Science Review 20, 11 (2001). 12011221.CrossRefGoogle Scholar
Aubouin, J., and Ndojaj, I. Regard sur la géologie de l'Albanie et sa place dans la géologie des Dinarides. Bulletin de la Société Géologique de France 6, (1964). 539625.Google Scholar
Baker, C., Hatzfeld, D., Lyon-Caen, H., Papadimitriou, E., and Rigo, A. Earthquake mechanisms of the Adriatic Sea and Western Greece: implications for the oceanic subduction-continental collision transition. Geophysical Journal International 131, (1997). 559594.CrossRefGoogle Scholar
Bard, E., Rostek, F., and Ménot-Combes, G. Radiocarbon calibration beyond 20,000 14C yr BP by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61, (2004). 204214.CrossRefGoogle Scholar
Becel, D., (2004). Modélisation numérique de l'érosion et de la sédimentation le long de la rivière Pilcomayo (Bolivie). PhD thesis, Grenoble University, 276 p.Google Scholar
Blum, M.D., and Tornqvist, T.E. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47, (2000). 248.CrossRefGoogle Scholar
Braucher, R., Brown, E.T., Bourlès, D.L., and Colin, F. In situ produced 10Be measurements at great depths: implications for production rates by fast muons. Earth and Planetary Science Letters 211, (2003). 251258.CrossRefGoogle Scholar
Bridgland, D., and Westaway, R. Climatically controlled river terrace staircases: a worldwide quaternary phenomenon. Geomorphology 98, (2008). 285315.Google Scholar
Brocard, G.Y., Van der Beek, P.A., Bourlès, D.L., Siame, L.L., and Mugnier, J.L. Long-term fluvial incision rates and post-glacial river relaxation time in the French Western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects. Earth and Planetary Science Letters 209, (2003). 197214.Google Scholar
Brown, E.T., Edmond, J.M., Raisbeck, G.M., Yiou, F., Kurtz, M.D., and Brook, E.J. Examination of surface exposure ages of moraines in Arena Valley, Antarctica, using in situ produced 10Be and 26Al. Geochimica Cosmochimica Acta 55, (1991). 22692283.CrossRefGoogle Scholar
De Mets, C., Gordon, R.G., Argus, D.F., and Stein, S. Current plate motions. Geophysical Journal International 101, (1990). 425478.Google Scholar
Dercourt, J., (1964). Contribution à l'étude géologique d'un secteur du Péloponnèse septemtrional. PhD thesis, Paris University, 418 pp.Google Scholar
Dunne, J., Elmore, D., and Muzikar, P. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, 1–2 (1999). 311.Google Scholar
Fuller, I.C., Macklin, M.G., Lewin, J., Passmore, D.G., and Wintle, A.G. River response to high-frequency climate oscillations in southern Europe over the Past 200 k.y. Geology 26, 3 (1998). 275278.Google Scholar
Geological map of Albania in scale 1:200000 Republika Popullore Socialiste E Shqiperise. (1983). Archive of Seismological Institute, Tirana.Google Scholar
Goldsworthy, M., Jackson, J., and Haines, J. The continuity of active fault systems in Greece. Geophysical Journal International 148, 3 (2002). 596618.Google Scholar
Hamlin, R.H.B., Woodward, J.C., Black, S., and Macklin, M.G. Sediment fingerprinting as a tool for interpreting long-term river activity: the Voidomatis basin, NW Greece. Foster, I.D.L. Tracers in Geomorphology. (2000). Wiley, Chichester. 473501.Google Scholar
Hancock, G.S., and Anderson, R.S. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. The Geological Society of America Bulletin 114, 9 (2002). 11311142.2.0.CO;2>CrossRefGoogle Scholar
Kallel, N., Duplessy, J.C., Labeyrie, L., Fontugne, M., Paterne, M., and Montacer, M. Mediterranean pluvial periods and sapropel formation over the last 200 000 years. Paleogeography Paleoclimatology Paleoecology 157, (2000). 4558.Google Scholar
Kilias, A., Tranos, M., Mountrakis, D., Shallo, M., Marto, A., and Turku, I. Geometry and kinematics of deformation in the Albanian orogenic belt during the Tertiary. Journal of Geodynamics 31, 2 (2001). 169187.Google Scholar
Knox, J.C. Human impacts on Wisconsin stream channels. Annals of the Association of American Geographer 76, (1977). 323342.Google Scholar
Lal, D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.Google Scholar
Lawson, I., Frogley, M., Bryant, C., Preece, R., and Tzedakis, P. The Lateglacial and Holocene environmental history of the Ionnina basin, north-west Greece. Quaternary Science Reviews 23, 14–15 (2004). 15991625.CrossRefGoogle Scholar
Lewin, J., Macklin, M.G., and Woodward, J.C. Late Quaternary fluvial sedimentation in the Voidomatis basin, Epirus, Northwest Greece. Quaternary Research 35, (1991). 103115.CrossRefGoogle Scholar
Macklin, M.G., Fuller, I.C., Lewin, J., Maas, G.S., Passmore, D.G., Rose, J., Woodward, J.C., Black, S., Hamlin, R.H.B., and Rowa, J.S. Correlation of fluvial sequences in the Mediterranean basin over last 200 ka and their relationship to climate change. Quaternary Science Reviews 21, (2002). 16331641.CrossRefGoogle Scholar
Middleton, R., Brown, L., Dezfouly-Arjomandy, B., and Klein, J. On 10Be standards and the half-life of 10Be. Nuclear Instruments and Methods in Physics Research 82, 3 (1993). 399403.Google Scholar
Moreno, E., (2000). Propriétés magnétiques des sédiments de la Marge du Portugal: Traceurs des variations climatiques et océanographiques en Atlantique Nord depuis 340 000 ans. PhD thesis, Aix-Marseille III University, 177 pp.Google Scholar
Mugnier, J.L., Carcaillet, J., Chabreyrou, J., Koçi, R., Jouanne, F., (2006). Tectonic, eustatic, and climatic controls of terrace development: the example of the Albanian terraces. NATO annual report, Sciences for Peace Program. 67pp.Google Scholar
Niewland, D.A., Oudemayer, B.C., and Valbona, U. The tectonic development of Albania: explanation and prediction of structural styles. Marine and Petroleum Geology 18, (2001). 161177.Google Scholar
Pazzaglia, F.J., Gardner, T.W., and Merritts, D.J. Bedrock fluvial incision and longitudinal profile development over geologic time scales determined by fluvial terraces. Wohl, E., and Tinkler, K. Bedrock Channels. American Geophysical Union. (1998). Geophysical Monograph Series 107, Washington. 207235.Google Scholar
Pigati, J.S., and Lifton, N.A. Geomagnetic effects on time-integrated cosmogenic nuclide production with emphasis on in situ 14C and 10Be. Earth and Planetary Science Letters 226, 1–2 (2004). 193205.CrossRefGoogle Scholar
Prifti, K., (1981). Les dépôts Quaternaires de la vallée du cours supérieur de la Vjosa. Permbledhje Studimesh 2, 4361. (in Albanian).Google Scholar
Prifti, K., (1984). Gjeomorfologjia dhe depozitimet kuaternare të rrjedhjes së mesme të lumit Devoll. Buletini I Shkencave Gjeologjike 2, 4359. (in Albanian).Google Scholar
Rahmstorf, S. Ocean circulation and climate during the past 120 000 years. Nature 419, (2002). 207214.CrossRefGoogle ScholarPubMed
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., Van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 3 (2004). 10291058.Google Scholar
Robertson, A., and Shallo, M. Mesozoic-Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context. Tectonophysics 316, 3 (2000). 197254.CrossRefGoogle Scholar
Roure, F., Nazaj, Sh., Mushka, K., Fili, I., Cadet, J.P., and Bonneau, M. Kinematic evolution and petroleum systems — an appraisal of the Outer Albanides. Mc Clay, K.R. Thrust Tectonics and Hydrocarbon Systems 82, (2004). AAPG memoir, 474493.Google Scholar
Rowan, J.S., Black, S., Macklin, M.G., Tabner, B.J., and Dore, J. Quaternary environmental change in Cyrenaica evidenced by U-Th, ESR and OSL of costal alluvial fan sequence. Libyan Studies 31, (2000). 516.CrossRefGoogle Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, B10 (2000). 23,75323,759.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., and Reimer, R.W. (2005). CALIB 5.0.. [WWW program and documentation].Google Scholar
Waters, D., (1993). The tectonic evolution of Epirus, N.W., Greece. PhD thesis, Cambridge university, 216 p.Google Scholar
Whipple, K.X., Tucker, G.E., (2002). Implications of sediment-flux dependent river incision models for landscape evolution. Journal of Geophysical Research, 107, (B2), 2039(Art. No) http://dx.doi.org/10.1029/2000JB000044 Google Scholar
Woodward, J.C., Hamlin, R.B.H., Macklin, M.G., Karkanas, P., and Kotjabopoulou, E. Quantitative sourcing of slackwater deposits at Boila rockshelter: a record of late-glacial flooding and palaeolithic settlement in the Pindus Mountains, Northern Greece. Geoarchaeology 16, 5 (2001). 501536.Google Scholar