Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T03:13:35.776Z Has data issue: false hasContentIssue false

Two Tephra Layers Bracketing Late Holocene Paleoecological Changes in Northern Germany

Published online by Cambridge University Press:  20 January 2017

Christel van den Bogaard
Affiliation:
GEOMAR Forschungszentrum, Wischhofstrasse 1-3, D-24148 Kiel, Germany
Walter Dörfler
Affiliation:
Institut für Ur- und Frühgeschichte, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
Rainer Glos
Affiliation:
Institut für Ur- und Frühgeschichte, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
Marie-Josée Nadeau
Affiliation:
Leibniz-Labor, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
Pieter M. Grootes
Affiliation:
Leibniz-Labor, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
Helmut Erlenkeuser
Affiliation:
Leibniz-Labor, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany

Abstract

Paleoecological records from two Holocene peat bogs in northern Germany are linked by two microscopic volcanic ash layers, correlated by petrology and geochemistry to explosive volcanism on Iceland. The younger “Microlite tephra” cannot be correlated to any known eruption, while the older tephra layer is identified as a deposit of the Hekla 3 eruption. The tephra layers are dated by an age–depth regression of accelerator mass spectrometry 14C ages that have been calibrated and combined in probability distributions. This procedure gives an age of 730–664 cal yr B.C. for the “Microlite tephra” event and 1087–1006 cal yr B.C. for the Hekla 3 event. Accordingly, the tephra layers were deposited during the late Bronze Age. At this time, human settlement slowly increased pressure on the environment, as indicated by changes in woodland pollen composition at the two bogs. The tephra-marker horizons further show that the palynologically defined transition from the Subboreal to the Subatlantic Period is synchronous in the investigated area. However, the macroscopic visible marker in peat, the change from fibrous to sapric peat, the “Schwarztorf-Weißtorf-Kontakt,” is asynchronous. Bog vegetation did not immediately react in unison to a climatic change at this pollen zone boundary; instead, the timing of vegetation change depended on the location within the bog.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aletsee, L Zur Geschichte der Moore und Wälder des nördlichen Holsteins. Nova Acta Leopoldina (1959). Google Scholar
Averdieck, F.-R Zur Geschichte der Moore und Wälder Holsteins. Nova Acta Leopoldina 130, (1957). Google Scholar
Baillie, M.G.L, and Munro, M.A.R Irish tree rings, Santorini and volcanic dust veils. Nature 322, (1988). 344346.Google Scholar
Beug, H.J Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. (1961). Gustav Fischer Verlag, Stuttgart.Google Scholar
Blackford, J Peat bogs as sources of proxy climatic data: Past approaches and future research. Chambers, F.M Climate Change and Human Impact on the Landscape. (1993). Chapman and Hall, London. 4756.Google Scholar
Bogaard, C.v.d Tephrostratigraphische Leithorizonte in holozänen Mooren Norddeutschlands. (1997). Universitat Kiel, Kiel.Google Scholar
Bogaard, C.v.d, and Schmincke, H.U Linking the North Atlantic to Central Europe: A high-resolution Holocene tephrochronological record from Northern Germany. Journal of Quaternary Science 17, (2002). 320.CrossRefGoogle Scholar
Bogaard, C.v.d, Dörfler, W, Sandgren, P, and Schmincke, H.-U Correlating the Holocene records: Icelandic tephra found in Schleswig-Holstein (Northern Germany). Naturwissenschaften 81, (1994). 554556.CrossRefGoogle Scholar
Boygle, J. (1998). A little goes a long way: Discovery of a new mid-Holocene tephra in Sweden. Boreas 27, 195199.Google Scholar
Dugmore, A.J, Larsen, G, and Newton, A.J Seven tephra isochrones in Scotland. The Holocene 5, (1995). 257266.CrossRefGoogle Scholar
Dugmore, A, Cook, G, Shore, J, Newton, A, Edwards, K, and Larsen, G Radiocarbon dating tephra layers in Britain and Iceland. Radiocarbon 37, (1995). 379388.Google Scholar
Faegri, K, and Iversen, J Textbook of pollen analysis. (1989). John Wiley & Sons, Chichester.Google Scholar
Grimm, E.C TILIA and TILIA-GRAPH: PC spreadsheet and graphics software for pollen data. Inqua-Commission for the study of the Holocene. Working Group for Data-Handling Methods—Newsletter 4, (1990). 57.Google Scholar
Grönvold, K, Oskarsson, N, Johnson, S.J, Clausen, H.B, Hammer, C.U, Bond, G, and Bard, E Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth and Planetary Science Letters 135, (1995). 149155.Google Scholar
Hammer, C.U, Clausen, H.B, and Dansgaard, W Greenland ice sheet evidence of postglacial volcanism and its climatic impact. Nature 288, (1980). 230235.CrossRefGoogle Scholar
Hartmann, J Stoffeinträge in schleswig-holsteinischen Böden während des Holozäns. Schr. Institut für Pflanzenernährung und Bodenkunde, Universität Kiel. Anonymous. (1992). Kiel, Selbstverlag. p. 0107.Google Scholar
Hayen, H Moorbotanische Untersuchungen zum Verlauf des Niederschlagsklimas und seiner Verknüpfung mit der menschlichen Siedlungstätigkeit. Neue Ausgrabungen und Forschungen in Niedersachsen 3, (1966). 280307.Google Scholar
Kilian, M.R, van der Plicht, J, and van Geel, B Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Review 14, (1995). 959966.CrossRefGoogle Scholar
Kvamme, T, Mangerud, J, Furnes, H, and Ruddiman, W.F Geochemistry of Pleistocene ash zones in cores from the North Atlantic. Norsk Geologisk Tidsskrift 69, (1989). 251272.Google Scholar
Merkt, J, and Müller, H Varve chronology of Lateglacial in Northwest Germany from lacustrine sediments of the Hämelsee/Lower Saxony. Quaternary International 61, (1999). 4159.CrossRefGoogle Scholar
Moor, P.D, Webb, J.A, and Collinson, M.E Pollen Analysis. (1991). Oxford. Blackwell Sci, Oxford.Google Scholar
Nadeau, M.-J, Schleicher, M, Grootes, P.M, Erlenkeuser, H, Gottdang, A, Mous, D.J.W, Sarnthein, M, and Willkomm, H The Leibniz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research B 123, (1997). 2230.CrossRefGoogle Scholar
Nadeau, M.-J, Grootes, P.M, Schleicher, M, Hasselberg, P, Rieck, A, and Bitterling, M Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40, (1998). 239245.Google Scholar
Overbeck, F Botanisch-geologische Moorkunde. (1975). Wachholtz, Neumünster.Google Scholar
Overbeck, F, Münnich, K.O, Aletsee, L, and Averdieck, F.R Das Alter des ‘Grenzhorizontes’ norddeutscher Hochmoore nach Radiocarbondatierungen. Flora 145, (1957). 3771.Google Scholar
Persson, C Tephrochronological investigation of peat deposits in Scandinavia and on the Faroe Islands. Sveriges Geologiska Undersökning 65, (1971). 134.Google Scholar
Pilcher, J.R, Hall, V.A, and McCormac, F.G An outline tephrochronology for the Holocene of the north of Ireland. Journal of Quaternary Science 11, (1996). 485494.Google Scholar
Schmidt, J.P Studien zur jüngeren Bronzezeit in Schleswig-Holstein und dem nordelbischen Hamburg. Bonn: Habelt. Universitätsforschungen zur prähistorischen Archäologie. (1993). p. 1180.Google Scholar
Schuschan, A Pollenanalytische Untersuchungen an einer postglazialen Kernfolge aus dem Dosenmoor bei Einfeld. (1989). Google Scholar
Stuiver, M, and Polach, H.A Discussion—Reporting of 14C data. Radiocarbon 19, (1977). 355363.CrossRefGoogle Scholar
Stuiver, M, and Reimer, P Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Stuiver, M, Grootes, P.M, and Braziunas, T.F The GISP2 ∂18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44, (1995). 341354.Google Scholar
Stuiver, M, Reimer, P.J, Bard, E, Beck, J.W, Burr, G.S, Hughen, K.A, Kromer, B, McCormac, G, Plicht, J.van der, and Spurk, M INTCAL98 radiocarbon age calibration, 24,000-0 cal B.P. Radiocarbon 40, (1998). 10411083.Google Scholar
Thorarinsson, S On the geology and geomorphology of Iceland. Geografiska Annaler Stockholm 41, (1960). 135169.Google Scholar
Thorarinsson, S Greetings from Iceland. Ash falls and volcanic aerosols in Scandinavia. Geografiska Annaler 63, (1981). 109118.Google Scholar
van Geel, B., and Renssen, H. (1998c). Abrupt climate change around 2650 B.P. in north-west Europe: Evidence for climatic teleconnections and a tentative explanation.. In Water, Environment and Society in Times of Climatic Change Issar, A. S. and Brown, N., Eds., pp. 2141.CrossRefGoogle Scholar
van Geel, B, Buurman, J, and Waterbolk, H Archaeological and paleoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 B.P. Journal of Quaternary Science 11, (1996). 451460.3.0.CO;2-9>CrossRefGoogle Scholar
van Geel, B, Raspopov, O.M, van der Plicht, J, and Renssen, H Solar forcing of abrupt climate change around 850 calendar years B.C. Peiser, B.J, Palmer, T, Bailey, M.E BAR International Series No. 728 (1998). 162168.Google Scholar
van Geel, B, van der Plicht, J, Kilian, M.R, Klaver, E.R, Kouwenberg, J.H.M, Renssen, H, Reynaud-Farrera, I, and Waterbolk, H.T The sharp rise of 14C ca. 800 cal B.C.: Possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40, (1998). 535550.Google Scholar
Wastegard, S, Björck, S, Grauert, M, and Hannon, G.E The Mjáuvøtn tephra and other Holocene tephra horizons from the Faroe Islands: A link between the Icelandic source region, the Nordic Seas, and the European continent. The Holocene 11, (2001). 101109.Google Scholar
Weber, C.A Grenzhorizont und älterer Sphagnumtorf. Abhandlungen Naturwissenschaftlicher Verein Bremen 24, (1930). 189267.Google Scholar