Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T23:12:55.508Z Has data issue: false hasContentIssue false

Towards a better knowledge of the molar morphology and ecology of extant and fossil grass rats (Muridae: Arvicanthis Lesson, 1842)

Published online by Cambridge University Press:  26 April 2023

Emmanuelle Stoetzel*
Affiliation:
Histoire Naturelle de l'Homme Préhistorique - UMR 7194, CNRS / MNHN / UPVD, Musée de l'Homme—Palais de Chaillot, 17 place du Trocadéro, 75016 Paris, France.
Helder Gomes Rodrigues
Affiliation:
Centre de Recherche en Paléontologie-Paris - UMR 7207, CNRS / MNHN, CP38, 8 rue Buffon, 75005, Paris, France.
Raphaël Cornette
Affiliation:
Institut de Systématique, Evolution, Biodiversité - UMR 7205, CNRS / MNHN / EPHE / Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France.
*
*Corresponding author email address: [email protected]

Abstract

African rodents of the genus Arvicanthis are presently restricted to sub-Saharan savannas and to the Nile Valley. In contrast, their distribution during the Quaternary included most of northern Africa, leading to the emergence of local fossil species. To date, there have been no comprehensive studies of Arvicanthis populations in northern Africa, neither to clarify their taxonomy nor their paleoecology. The present study aims to explore both morphology and diet of modern and fossil Arvicanthis species using geometric morphometric and dental microwear analyses on first upper molars. The geometric morphometric analysis efficiently discriminates the studied extant and fossil Arvicanthis species and allowed for the identification of probable geographical variations within the A. niloticus group. Although all extant species of the genus Arvicanthis are predominantly grass-eaters, microwear analyses also highlighted diet differences in various modern populations of A. niloticus, as well as paleodiet inferences in the A. arambourgi fossil species, but no clear link between molar size or shape and diet can be established. This work helps set the stage for a complete revision of the fossil remains of Arvicanthis from northern African Quaternary deposits, and for a better understanding of the geographical and temporal morphological variability of this genus in Africa.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbate, E., Sagri, M., 2012. Early to Middle Pleistocene Homo dispersals from Africa to Eurasia: geological, climatic and environmental constraints. Quaternary International 267, 319.CrossRefGoogle Scholar
Abdel Rahman, A.E.H., Ducroz, J.F., Mitchell, A., Lamb, J., Contrafatto, G., Denys, C., Lecompte, E., Taylor, P.J., 2008. Phylogeny and historical demography of economically important rodents of the genus Arvicanthis (Mammalia: Muridae) from the Nile Valley: of mice and men. Biological Journal of the Linnean Society 93, 641655.CrossRefGoogle Scholar
Adams, D.C., Rohlf, F.J., Slice, D.E., 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy 24, 714.Google Scholar
Addisu, A., Bekele, A., 2014. Habitat preferences, seasonal abundance and diets of rodents in Alage, Southern Ethiopia. African Journal of Ecology 52, 284291.Google Scholar
Andrews, P., 1990. Owls, Caves and Fossils. Natural History Museum Publications, London.Google Scholar
Atteynine, S.A., 2017. Changement Climatique et Rongeurs Ravageurs des Cultures: Effet Attractif des Cultures de Saison Sèche sur les Espèces du Genre Arvicanthis au Mali. PhD Dissertation, Aix-Marseille University, France and University of Bamako, Mali.Google Scholar
Aulagnier, S., Cuzin, F., Thévenot, M., 2017. Mammifères Sauvages du Maroc: Peuplement, Répartition, Ecologie. Société Française pour l'Etude et la Protection des Mammifères, Castanet Tolosan, France.Google Scholar
Avery, D.M., 1982. Micromammals as paleoenvironmental indicators and an interpretation of the late Quaternary in the Southern Cape Province. Annals of the South African Museum 85, 183374.Google Scholar
Balter, M., 2011. Was North Africa the launch pad for modern human migrations? Science 331, 2023.CrossRefGoogle ScholarPubMed
Baylac, M., Friess, M., 2005. Fourier descriptors, Procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations. In: Slice, E. (Ed.), Modern Morphometrics in Physical Anthropology. Springer, Boston, MA, pp. 145165.CrossRefGoogle Scholar
Bekele, A., Capanna, E., Corti, M., Marcus, L.F., Schlitter, D.A., 1993. Systematics and geographic variation of Ethiopian Arvicanthis (Rodentia, Muridae). Journal of Zoology 230, 117134.CrossRefGoogle Scholar
Bookstein, F.L., 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis 1, 225243.CrossRefGoogle ScholarPubMed
Bryja, J., Colangelo, P., Lavrenchenko, L.A., Meheretu, Y., Sumbera, R., Bryjova, A., Verheyen, E., Leirs, H., Castiglia, R., 2019. Diversity and evolution of African Grass Rats (Muridae: Arvicanthis)—from radiation in East Africa to repeated colonization of northwestern and southeastern savannas. Journal of Zoological Systematics and Evolutionary Research 57, 970988.CrossRefGoogle Scholar
Bryja, J., Granjon, L., Dobigny, G., Patzenhauerova, H., Konecny, A., Duplantier, J.M., Gauthier, P., et al., 2010. Plio-Pleistocene history of West African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): the environment/geography/genetic interplay. Molecular Ecology 19, 47834799.CrossRefGoogle ScholarPubMed
Carto, S.L., Weaver, A.J., Hetherington, R., Lam, Y., Wiebe, E.C., 2009. Out of Africa and into an ice age: on the role of global climate change in the Late Pleistocene migration of early modern humans out of Africa. Journal of Human Evolution 56, 139151.CrossRefGoogle ScholarPubMed
Castañeda, I.S., Mulitza, S., Schefuß, E., Lopes dos Santos, R.A., Sinninghe Damsté, J.S., Schouten, S., 2009. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proceedings of the National Academy of Sciences 106, 2015920163.CrossRefGoogle ScholarPubMed
Castiglia, R., Bekele, A., Makundi, R., Oguge, N., Corti, M., 2006. Chromosomal diversity in the genus Arvicanthis from east Africa: a taxonomic and phylogenetic evaluation. Journal of Zoological Systematic and Evolutionary Research 44, 223235.CrossRefGoogle Scholar
Cerling, T.E., 1992. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology 97, 241247.CrossRefGoogle Scholar
Chaline, J., 1972. Le rôle des rongeurs dans l’élaboration d'une biostratigraphie et d'une stratigraphie climatique fine du Quaternaire. Mémoires du BRGM 77, 375379.Google Scholar
Chaline, J., 1973. Biogéographie et fluctuations climatiques au Quaternaire d'après les faunes de rongeurs. Acta Zoologica Cracoviensia 18, 141160.Google Scholar
Compton, J.S., 2011. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa. Quaternary Science Reviews 30, 506527.CrossRefGoogle Scholar
Conover, W.J., Iman, R.L., 1981. Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician 35, 124129.Google Scholar
Corti, M., Fadda, C., 1996. Systematics of Arvicanthis (Rodentia, Muridae) from the Horn of Africa: a geometric morphometrics evaluation. Italian Journal of Zoology 63, 185192.CrossRefGoogle Scholar
Coulthard, T.J., Ramirez, J.A., Barton, N., Rogerson, M., Brücher, T., 2013. Were rivers flowing across the Sahara during the last interglacial? Implications for human migration through Africa. PLoS ONE 8(9), e74834. https://doi.org/10.1371/journal.pone.0074834.CrossRefGoogle ScholarPubMed
Cucchi, T., Papayianni, K., Cersoy, S., Aznar-Cormano, L., Zazzo, A., Debruyne, R., Berthon, R., et al., 2020. Tracking the Near Eastern origins and European dispersal of the western house mouse. Scientific Report 10, 8276. https://doi.org/10.1038/s41598-020-64939-9.CrossRefGoogle ScholarPubMed
Cuenca-Bescos, G., Melero-Rubio, M., Rofes, J., Martínez, I., Arsuaga, J.L., Blain, H.A., Lopez-Garcia, J.M., Carbonell, E., Bermudez de Castro, J.M., 2011. The Early–Middle Pleistocene environmental and climatic change and the human expansion in Western Europe: a case study with small vertebrates (Gran Dolina, Atapuerca, Spain). Journal of Human Evolution 60, 481491.CrossRefGoogle ScholarPubMed
DeMenocal, P., 1995. Plio-Pleistocene African climate. Science 270, 5359.CrossRefGoogle ScholarPubMed
DeMenocal, P., 2004. African climate change and faunal evolution during the Plio-Pleistocene. Earth and Planetary Science Letters 220, 324.CrossRefGoogle Scholar
DeMenocal, P., Stringer, C., 2016. Human migration: climate and the peopling of the world. Nature 538, 4950.CrossRefGoogle ScholarPubMed
Denys, C., Taylor, P.J., Aplin, K.P., 2017. Family Muridae. In: Wilson, D.E., Lacher, T.E., Jr, Mittermeier, R.A. (Eds.), Handbook of the Mammals of the World, Volume 7: Rodents II. Lynx Edicions, Barcelona, Spain.Google Scholar
Dobigny, G., Tatard, C., Gauthier, P., Ba, K., Duplantier, J.M., Granjon, L., Kergoat, G.J., 2013. Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and sub-Saharan open habitats Pleistocene history. PLoS One 8(11), e77815. https://doi.org/10.1371/journal.pone.0077815.CrossRefGoogle ScholarPubMed
Drake, N.A., Breeze, P., Parker, A., 2013. Palaeoclimate in the Saharan and Arabian deserts during the Middle Palaeolithic and the potential for hominin dispersals. Quaternary International 300, 4861.CrossRefGoogle Scholar
Dupont, L.M., Agwu, C.O.C., 1992. Latitudinal shifts of forest and savanna in N.W. Africa during the Brunhes chron: further marine palynological results from site M 16415 (9°N 19°W). Vegetation History and Archaeobotany 1, 163175.CrossRefGoogle Scholar
Fadda, C., Corti, M., 2001. Three dimensional geometric morphometrics of Arvicanthis: implications for systematics and taxonomy. Journal of Zoological Systematics and Evolutionary Research 29, 585696.Google Scholar
Galat, G., Galat-Luong, A., 1977. Démographie et régime alimentaire d'une troupe de Cercopithecus aethiops sabaeus en habitat marginal au nord Sénégal. Revue d'Ecologie, Terre et Vie, Société Nationale de Protection de la Nature 31, 557577.Google Scholar
Garcea, E.A.A., 2012. Successes and failures of human dispersals from North Africa. Quaternary International 270, 119128.CrossRefGoogle Scholar
Geraads, D., 1981. Bovidae et Giraffidae (Artiodactyla, Mammalia) du Pléistocène de Ternifine (Algérie). Bulletin du Museum national d'Histoire naturelle, Paris 4, ser. C3, 4786.Google Scholar
Gomes Rodrigues, H., Marivaux, L., Vianey-Liaud, M., 2012. Expansion of open landscapes in northern China during the Oligocene induced by dramatic climate changes: paleoecological evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 358–360, 6271.CrossRefGoogle Scholar
Gomes Rodrigues, H., Merceron, G., Viriot, L., 2009. Dental microwear patterns of extant and extinct Muridae (Rodentia, Mammalia): ecological implications. Naturwissenschaften 96, 537542.10.1007/s00114-008-0501-xCrossRefGoogle Scholar
Gomes Rodrigues, H., Renaud, S., Charles, C., Le Poul, Y., Solé, F., Aguilar, J.P., Michaux, J., et al., 2013. Roles of dental development and adaptation in rodent evolution. Nature Communications 4, 2504. https://doi.org/10.1038/ncomms3504.CrossRefGoogle Scholar
Granjon, L., Duplantier, J.M., 2009. Les Rongeurs d'Afrique Sahélo-Soudanienne. IRD Editions, Publications Scientifiques du Muséum, Marseille.Google Scholar
Gunz, P., Mitteroecker, P., 2013. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian Journal Of Mammalogy 24, 103109.Google Scholar
Hanot, P., Gerber, S., Guintard, C., Herrel, A., Verslype, L., Cornette, R., 2020. Reconstructing the functional traits of the horses from the tomb of King Childeric. Journal of Archaeological Science 121, 105200. https://doi.org/10.1016/j.jas.2020.105200.CrossRefGoogle Scholar
Happold, D., 2013. Mammals of Africa: Vol. 3, Rodents, Hares and Rabbits. Bloomsbury Publishing, London, UK.Google Scholar
Hirpasa, T., Wondimu, E., Tadele, A., 2022. Distribution, diet, and trophic level of Arvicanthis abyssinicus and Tachyoryctes splendens around the area of recently extinct Ethiopian Wolf Canis simiensis on Mount Guna, northwestern Ethiopia. Journal of Threatened Taxa 14, 2053920549.Google Scholar
Hooghiemstra, H., Lézine, A.M., Leroy, S.A.G., Dupont, L., Marret, F., 2006. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quaternary International 148, 2944.CrossRefGoogle Scholar
Hulme-Beaman, A., Claude, J., Chaval, Y., Evin, A., Morand, S., Vigne, J.D., Dobney, K., Cucchi, T., 2019. Dental shape variation and phylogenetic signal in the Rattini Tribe species of mainland Southeast Asia. Journal of Mammalian Evolution 26, 435446.CrossRefGoogle Scholar
Jaeger, J.J., 1975. Evolution des Rongeurs du Miocène à l'actuel en Afrique Nord-Occidentale. PhD Dissertation, Université de Montpellier, France.Google Scholar
Janzekovic, F., Krystufek, B., 2004. Geometric morphometry of the upper molars in European wood mice Apodemus. Folia Zoologica 53, 4755.Google Scholar
Jones, E.P., Eager, H.M., Gabriel, S.I., Johannesdottir, F., Searle, J.B., 2013. Genetic tracking of mice and other bioproxies to infer human history. Trends in Genetics 29, 298308.CrossRefGoogle ScholarPubMed
Kaya, F., Bibi, F., Žliobaitė, I., Eronen, J.T., Hui, T., Fortelius, M., 2018. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nature Ecology & Evolution 2, 241246.CrossRefGoogle ScholarPubMed
Kerr, E., Cornette, R., Gomes Rodrigues, H., Renaud, S., Chevret, P., Tresset, A., Herrel, A., 2017. Can functional traits help explain the coexistence of two species of Apodemus? Biological Journal of the Linnean Society 122, 883896.CrossRefGoogle Scholar
Kimura, Y., Jacobs, L.L., Flynn, L.J., 2013. Lineage-specific responses of tooth shape in murine rodents (Murinae, Rodentia) to Late Miocene dietary change in the Siwaliks of Pakistan. PLoS ONE 8(10), e76070. https://doi.org/10.1371/journal.pone.0076070.CrossRefGoogle ScholarPubMed
Lazagabaster, I.A., Rovelli, V., Fabre, P.H., Porat, R., Ullman, M., Davidovich, U., Lavi, T., et al., 2021. Rare crested rat subfossils unveil Afro-Eurasian ecological corridors synchronous with early human dispersals. Proceedings of the National Academy of Sciences 118(31), e2105719118. https://doi.org/10.1073/pnas.2105719118.CrossRefGoogle ScholarPubMed
Le Houerou, H.N., 1997. Climate, flora and fauna changes in the Sahara over the past 500 million years. Journal of Arid Environments 37, 619647.CrossRefGoogle Scholar
Levin, N.E., 2015. Environment and climate of early human evolution. Annual Review of Earth and Planetary Sciences 43, 405429.CrossRefGoogle Scholar
Macholan, M., 2006. A geometric morphometric analysis of the shape of the first upper molar in mice of the genus Mus (Muridae, Rodentia). Journal of Zoology 270, 672681.CrossRefGoogle Scholar
Manthi, F.K., 2007. A preliminary review of the rodent fauna from Lemudong'o, southwestern Kenya, and its implication to the Late Miocene paleoenvironments. Kirtlandia, The Cleveland Museum of Natural History 56, 92105.Google Scholar
Matthews, T., Stynder, D.D., 2011. An analysis of the Aethomys (Murinae) community from Langebaanweg (Early Pliocene, South Africa) using geometric morphometrics. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 230242.CrossRefGoogle Scholar
McDonough, M.M., Sumbera, R., Mazoch, V., Ferguson, A.W., Phillips, C.D., Bryja, J., 2015. Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region. Molecular Ecology 24, 52485266.CrossRefGoogle ScholarPubMed
Mein, P., Pickford, M., 1992. Gisements karstiques Pléistocènes au Djebel Ressas, Tunisie. Comptes Rendus de l'Académie des Sciences de Paris, Serie II 315, 247253.Google Scholar
Meunier, M., Stoetzel, E., Souttou, K., Sekour, M., Moussa, H., Boukhemza, M., Doumandji, S., Denys, C., 2020. Mise à jour de la liste des rongeurs d'Algérie, biogéographie et implications paléoécologiques. Bulletin de la Société Zoologique de France 145, 413474.Google Scholar
Monadjem, A., Taylor, P.J., Denys, C., Cotterill, F.P.D., 2015. Rodents of Sub-Saharan Africa. A Biogeographic and Taxonomic Synthesis. De Gruyter, Berlin.CrossRefGoogle Scholar
Musser, G.G., Carleton, M.D., 2005. Superfamily Muroidea. In: Wilson, D., Reeder, D.M. (Eds.), Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed. Johns Hopkins University Press, Baltimore, MD.Google Scholar
Osborne, A.H., Vance, D., Rohling, E.J., Barton, N., Rogerson, M., Fello, N., 2008. A humid corridor across the Sahara for the migration of early humans out of Africa 120,000 years ago. PNAS 105, 1644416447.CrossRefGoogle ScholarPubMed
Poulet, A.R., 1982. Pullulation de Rongeurs dans le Sahel: Mécanismes el Déterminisme du Cycle d'abondance de Taterillus pygargus et d'Arvicanthis niloticus (Rongeurs, Gerbillidés et Muridés) dans le Sahel du Sénégal de 1975 à 1977. PhD Dissertation, University Paris 6, Editions ORSTOM, Paris, France.Google Scholar
Rabiu, S., Fisher, M., 1989. The breeding season and diet of Arvicanthis in northern Nigeria. Journal of Tropical Ecology 5, 375386.CrossRefGoogle Scholar
Rabiu, S., Rose, R.K., 1997. A quantitative study of diet in three species of rodents in natural and irrigated savanna fields. Acta Theriologica 42, 5570.CrossRefGoogle Scholar
Renaud, S., Benammi, M., Jaeger, J.-J., 1999. Morphological evolution of the murine rodent Paraethomys in response to climatic variations (Mio-Pleistocene of North Africa). Paleobiology 25, 369382.CrossRefGoogle Scholar
Renaud, S., Gomes Rodrigues, H., Ledevin, R., Pisanu, B., Chapuis, J.L., Hardouin, E.A., 2015. Fast evolutionary response of house mice to anthropogenic disturbance on a Sub-Antarctic island. Biological Journal of the Linnean Society 114, 513526.CrossRefGoogle Scholar
Renaud, S., Pantalacci, S., Auffray, J.-C., 2011. Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLoS ONE 6(5): e18951. https://doi.org/10.1371/journal.pone.0018951.CrossRefGoogle ScholarPubMed
Rohlf, F.J., 2017. TpsDig2, Digitize Landmarks and Outlines, Version 2.31. Department of Ecology and Evolution, State University of New York at Stony Brook, New York.Google Scholar
Rohlf, F.J., 2019a. TpsUtil, File Utility Program, Version 1.78. Department of Ecology and Evolution, State University of New York at Stony Brook, New York.Google Scholar
Rohlf, F.J., 2019b. TpsRelw, Relative Warps Analysis, Version 1.70. Department of Ecology and Evolution, State University of New York at Stony Brook, New York.Google Scholar
Rohlf, F.J., Slice, D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology 39, 4059.Google Scholar
Scerri, E.M.L., 2017. The North African Middle Stone Age and its place in recent human evolution. Evolutionary Anthropology 26, 119135.CrossRefGoogle ScholarPubMed
Siahsarvie, R., Darvish, J., 2008. Geometric morphometric analysis of Iranian wood mice of the genus Apodemus (Rodentia, Muridae). Mammalia 72, 109115.10.1515/MAMM.2008.020CrossRefGoogle Scholar
Stoetzel, E., 2013. Late Cenozoic micromammal biochronology of northwestern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 392, 359381.CrossRefGoogle Scholar
Stoetzel, E., 2017. Adaptations and dispersals of anatomically modern humans in the changing environments of North Africa: the contribution of microvertebrates. African Archaeological Review 34, 453468.CrossRefGoogle Scholar
Stoetzel, E., Cornette, R., Lalis, A., Nicolas, V., Cucchi, T., Denys, C., 2017. Systematics and evolution of the Meriones shawii/grandis complex (Rodentia, Gerbillinae) during the late Quaternary in northwestern Africa: exploring the role of environmental and anthropogenic changes. Quaternary Science Reviews 164, 199216.CrossRefGoogle Scholar
Stoetzel, E., Sime, W.B., Pleurdeau, D., Asrat, A., Assefa, Z., Desclaux, E., Denys, C., 2018. Preliminary study of the rodent assemblages of Goda Buticha: new insights on late Quaternary environmental and cultural changes in southeastern Ethiopia. Quaternary International 471, 2134.CrossRefGoogle Scholar
Taylor, K.D., Green, M.G., 1976. The influence of rainfall on diet and reproduction in four African rodent species. Journal of Zoology 180, 367389.CrossRefGoogle ScholarPubMed
Tchernov, E., 1968. Succession of Rodent Faunas During the Upper Pleistocene of Israel. Verlag Paul Parey, Berlin.Google Scholar
Tchernov, E., 1975. XVI. Rodent faunas and environmental changes in the Pleistocene of Israel. In: Prakash, I., Ghosh, P.K. (Eds.), Rodents in Desert Environments. Junk, The Hague, pp. 331362.CrossRefGoogle Scholar
Teaford, M.F., Oyen, O.J., 1989. In vivo and in vitro turnover in dental microwear. American Journal of Biological Anthropology 80(4), 447460.CrossRefGoogle ScholarPubMed
Trauth, M.H., Larrasoana, J.C., Mudelsee, M., 2009. Trends, rhythms and events in Plio-Pleistocene African climate. Quaternary Science Reviews 28, 399411.CrossRefGoogle Scholar
Walker, A., Hoeck, H.N., Perez, L., 1978. Microwear of mammalian teeth as an indicator of diet. Science 201, 908910.CrossRefGoogle ScholarPubMed
Weissbrod, L., Marshall, F.B., Valla, F.R., Khalaily, H., Bar-Oz, G., Auffray, J.C., Vigne, J.D., Cucchi, T., 2017. Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15,000 y ago. Proceedings of the National Academy of Sciences 114, 40994104.CrossRefGoogle ScholarPubMed
Weissbrod, L., Weinstein-Evron, M., 2020. Climate variability in early expansions of Homo sapiens in light of the new record of micromammals in Misliya Cave, Israel. Journal of Human Evolution 139, 102741. https://doi.org/10.1016/j.jhevol.2020.102741.CrossRefGoogle ScholarPubMed
Whiting Blome, M., Cohen, A.S., Tryon, C.A., Brooks, A.S., Russel, J., 2012. The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000–30,000 years ago. Journal of Human Evolution 62, 563592.CrossRefGoogle Scholar
Winkler, A.J., 2002. Neogene paleobiogeography and East African paleoenvironments: contributions from the Tugen Hills rodents and lagomorphs. Journal of Human Evolution 42, 237256.CrossRefGoogle Scholar
Zelditch, M.L., Swiderski, D.L., Sheets, H.D., 2012. Geometric Morphometrics for Biologists: A Primer. Academic Press, Amsterdam.Google Scholar
Supplementary material: Image

Stoetzel et al. supplementary material

Stoetzel et al. supplementary material 1
Download Stoetzel et al. supplementary material(Image)
Image 39.7 KB
Supplementary material: File

Stoetzel et al. supplementary material

Stoetzel et al. supplementary material 2

Download Stoetzel et al. supplementary material(File)
File 32.3 KB