Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T15:25:07.650Z Has data issue: false hasContentIssue false

Toward a standardized procedure for charcoal analysis

Published online by Cambridge University Press:  01 September 2020

Margarita Tsakiridou*
Affiliation:
School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, PO1 3HE, Hampshire, UK
Laura Cunningham
Affiliation:
School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, PO1 3HE, Hampshire, UK
Mark Hardiman
Affiliation:
School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, PO1 3HE, Hampshire, UK
*
*Corresponding author at: School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, Hampshire, UK. E-mail address: [email protected] (M. Tsakiridou)

Abstract

Sedimentary charcoal records are used for understanding fire as an earth system process; however, no standardized laboratory methodology exists. Varying sample volumes and chemical treatments (i.e., type of chemical for length of time) are used for the deflocculation and extraction of charcoal from sediment samples. Here, we present the first systematic assessment of the effect of commonly used chemicals on charcoal area and number of fragments. In modern charcoal the area of fragments was significantly different depending on the chemical treatment. We subsequently applied H2O2 (33%), NaClO (12.5%), and HNO3 (50%) to a late-glacial–early Holocene paleorecord and tested different sample volumes. The effects of the treatments were consistent between modern and fossil experiments, which demonstrates the validity of applying results from the modern experiment to the fossil records. Based on our experiments we suggest (1) H2O2 33%, especially for highly organic sediments; (2) avoidance of high concentrations of NaClO for prolonged periods of time, and of HNO3; and (3) samples of 1 cm3 provided typically consistent profiles. Our results indicate that charcoal properties can be influenced by treatment type and sample volume, thus emphasizing the need for a common protocol to enable reliable multi-study comparisons or composite fire histories.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics International 11, 3642.Google Scholar
Aleman, J., Hennebelle, A., Vannière, B., Blarquez, O., Global Paleofire Working Group, 2018. Sparking new opportunities for charcoal-based fire history reconstructions. Fire 1, 7. https://doi.org/10.3390/fire1010007.CrossRefGoogle Scholar
Ali, A.A., Higuera, P.E., Bergeron, Y., Carcaillet, C., 2009. Comparing fire-history interpretations based on area, number and estimated volume of macroscopic charcoal in lake sediments. Quaternary Research 72, 462468. https://doi.org/10.1016/j.yqres.2009.07.002.CrossRefGoogle Scholar
Bates, D., Mächler, M., Bolker, B., Walker, S., 2014. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 148.Google Scholar
Belcher, C.M., New, S.L., Santín Nuño, C., Doerr, S.H., Dewhirst, R.A., Grosvenor, M.J., Hudspith, V.A., 2018. What Can Charcoal Reflectance Tell Us About Energy Release in Wildfires and the Properties of Pyrogenic Carbon? Frontiers in Earth Science 6:169. https://doi.org/10.3389/feart.2018.00169.CrossRefGoogle Scholar
Brown, K.J., Power, M.J., 2013. Charred particle analyses. In: Elias, S. (Ed.) Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp. 716729.CrossRefGoogle Scholar
Carcaillet, C., Bouvier, M., Fréchette, B., Larouche, A.C., Richard, P.J., 2001. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene 11, 467476.CrossRefGoogle Scholar
Chrzazvez, J., Théry-Parisot, I., Fiorucci, G., Terral, J.F., Thibaut, B., 2014. Impact of post-depositional processes on charcoal fragmentation and archaeobotanical implications: experimental approach combining charcoal analysis and biomechanics. Journal of Archaeological Science 44, 3042. https://doi.org/10.1016/j.jas.2014.01.006.Google Scholar
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A.F., Krebs, P., 2009. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews 28, 555576. https://doi.org/10.1016/j.quascirev.2008.11.005.CrossRefGoogle Scholar
Crawford, A.J., Belcher, C.M., 2016. Area–volume relationships for fossil charcoal and their relevance for fire history reconstruction. The Holocene 26, 822826. https://doi.org/10.1177/0959683615618264.CrossRefGoogle Scholar
Crawford, A. J., & Belcher, C. M., 2014. Charcoal morphometry for paleoecological analysis: the effects of fuel type and transportation on morphological parameters. Applications in plant sciences, 2(8), 1400004. https://doi.org/10.3732/apps.1400004CrossRefGoogle ScholarPubMed
Edwards, K.J., Whittington, G., 2000. Multiple charcoal profiles in a Scottish lake: taphonomy, fire ecology, human impact and inference. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 6786. https://doi.org/10.1016/S0031-0182(00)00176-0.CrossRefGoogle Scholar
Feurdean, A., Spessa, A., Magyari, E.K., Willis, K.J., Veres, D., Hickler, T., 2012. Trends in biomass burning in the Carpathian region over the last 15,000 years. Quaternary Science Reviews 45, 111125. https://doi.org/10.1016/j.quascirev.2012.04.001.CrossRefGoogle Scholar
Florescu, G., Vannière, B., Feurdean, A., 2018. Exploring the influence of local controls on fire activity using multiple charcoal records from northern Romanian Carpathians. Quaternary International 488, 4157. https://doi.org/10.1016/j.quaint.2018.03.042.CrossRefGoogle Scholar
Halsall, K.M., Ellingsen, V.M., Asplund, J., Bradshaw, R.H., Ohlson, M., 2018. Fossil charcoal quantification using manual and image analysis approaches. The Holocene 28, 13451353. https://doi.org/10.1177/0959683618771488.CrossRefGoogle Scholar
Hawthorne, D., Mustaphi, C.J.C., Aleman, J.C., Blarquez, O., Colombaroli, D., Daniau, A.L., Marlon, J.R., et al. , 2018. Global Modern Charcoal Dataset (GMCD): A tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quaternary International 488, 317. https://doi.org/10.1016/j.quaint.2017.03.046.Google Scholar
Higuera, P.E., Gavin, D.G., Bartlein, P.J., Hallett, D.J., 2010. Peak detection in sediment–charcoal records: impacts of alternative data analysis methods on fire-history interpretations. International Journal of Wildland Fire 19, 9961014. https://doi.org/10.1071/WF09134.CrossRefGoogle Scholar
Kurth, V.J., MacKenzie, M.D., DeLuca, T.H., 2006. Estimating charcoal content in forest mineral soils. Geoderma 137, 135139. https://doi.org/10.1016/j.geoderma.2006.08.003.CrossRefGoogle Scholar
Leys, B., Carcaillet, C., Dezileau, L., Ali, A.A., Bradshaw, R.H., 2013. A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica. Quaternary Research 79, 337349. https://doi.org/10.1016/j.yqres.2013.01.00.CrossRefGoogle Scholar
Lowe, J.J., Walker, M.J.C., Scott, E.M., Harkness, D.D., Bryant, C.L., Davies, S.M., 2004. A coherent high-precision radiocarbon chronology for the Lateglacial sequence at Sluggan Bog, Co. Antrim, Northern Ireland. Journal of Quaternary Science 19, 147158.CrossRefGoogle Scholar
Marlon, J., Bartlein, P.J., Whitlock, C., 2006. Fire-fuel-climate linkages in the northwestern USA during the Holocene. The Holocene, 16(8), 10591071. https://doi.org/10.1177/0959683606069396CrossRefGoogle Scholar
Marriner, N., Kaniewski, D., Gambin, T., Gambin, B., Vannière, B., Morhange, C., Djamali, M., et al. , 2019. Fire as a motor of rapid environmental degradation during the earliest peopling of Malta 7500 years ago. Quaternary Science Reviews 212, 199205. https://doi.org/10.1016/j.quascirev.2019.03.001.CrossRefGoogle Scholar
Marynowski, L., Kubik, R., Uhl, D., Simoneit, B.R., 2014. Molecular composition of fossil charcoal and relationship with incomplete combustion of wood. Organic geochemistry, 77, 2231. https://doi.org/10.1016/j.orggeochem.2014.09.003CrossRefGoogle Scholar
McParland, L.C., Collinson, M.E., Scott, A.C., Campbell, G., Veal, R., 2010. Is vitrification in charcoal a result of high temperature burning of wood? Journal of Archaeological Science 37, 26792687. https://doi.org/10.1016/j.jas.2010.06.006.CrossRefGoogle Scholar
McParland, L.C., Collinson, M.E., Scott, A.C., Steart, D.C., Grassineau, N.V., Gibbons, S.J., 2007. Ferns and fires: experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry. Palaios 22, 528538. https://doi.org/10.2110/palo.2005.p05-138.CrossRefGoogle Scholar
McParland, L.C., Hazell, Z., Campbell, G., Collinson, M.E., Scott, A.C., 2009. How the Romans got themselves into hot water: temperatures and fuel types used in firing a hypocaust. Environmental Archaeology 14, 176183. https://doi.org/10.1179/146141009X12481709928445.CrossRefGoogle Scholar
Mooney, S.D., Tinner, W., 2011. The analysis of charcoal in peat and organic sediments. Mires and Peat 7, 118.Google Scholar
New, S.L., Belcher, C., Hudspith, V.A., Gallego-Sala, A.V., 2016. Holocene fire history: can evidence of peat burning be found in the palaeo-archive? Mires Peat 18, 111. https://doi.org/10.19189/MaP.2016.OMB.219.Google Scholar
Nichols, G.J., Cripps, J.A., Collinson, M.E., Scott, A.C., 2000. Experiments in waterlogging and sedimentology of charcoal: results and implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1-4), 4356. https://doi.org/10.1016/S0031-0182(00)00174-7CrossRefGoogle Scholar
Pimentel, R.S., 2009. Kendall's Tau and Spearman's Rho for Zero-Inflated Data. PhD Thesis, Western Michigan University.Google Scholar
Pitkänen, A., Tolonen, K., Jungner, H., 2001. A basin-based approach to the long-term history of forest fires as determined from peat strata. The Holocene 11, 599605. https://doi.org/10.1191/095968301680223558.CrossRefGoogle Scholar
Power, M.J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S.P., Mayle, F.E., Ballouche, A., et al. , 2008. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate dynamics 30, 887907. https://doi.org/10.1007/s00382-007-0334-x.CrossRefGoogle Scholar
Prat-Guitart, N., Rein, G., Hadden, R.M., Belcher, C.M. Yearsley, J.M., 2016a. Propagation probability and spread rate of self-sustained smouldering fires under controlled moisture content and bulk density conditions. International Journal of Wildland Fire 25, 456465. https://doi.org/10.1071/WF15103.CrossRefGoogle Scholar
Prat-Guitart, N., Rein, G., Hadden, R.M., Belcher, C.M., Yearsley, J.M., 2016b. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Science of the Total Environment, 19. https://doi.org/10.1016/j.scitotenv.2016.02.145.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al. , 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428. https://doi.org/10.1016/j.quascirev.2014.09.007.CrossRefGoogle Scholar
R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.Google Scholar
Rehn, E., Rehn, A., Possemiers, A., 2019. Fossil charcoal particle identification and classification by two convolutional neural networks. Quaternary Science Reviews 226, 106038. https://doi.org/10.1016/j.quascirev.2019.106038.CrossRefGoogle Scholar
Rein, G., 2013. Smouldering Fires and Natural Fuels. In: Belcher, C.M. (ed.) Fire Phenomena and the Earth System, an Interdisciplinary Guide to Fire Science, Wiley-Blackwell, Chichester, UK, pp. 1534.CrossRefGoogle Scholar
Remy, C.C., Fouquemberg, C., Asselin, H., Andrieux, B., Magnan, G., Brossier, B., Grondin, P., et al. , 2018. Guidelines for the use and interpretation of palaeofire reconstructions based on various archives and proxies. Quaternary Science Reviews 193, 312322. https://doi.org/10.1016/j.quascirev.2018.06.010.CrossRefGoogle Scholar
Rhodes, A.N., 1998. A method for the preparation and quantification of microscopic charcoal from terrestrial and lacustrine sediment cores. The Holocene 8, 113117. https://doi.org/10.1191/095968398671104653.CrossRefGoogle Scholar
Rius, D., Vannière, B., Galop, D., Richard, H., 2011. Holocene fire regime changes from multiple-site sedimentary charcoal analyses in the Lourdes basin (Pyrenees, France). Quaternary Science Reviews, 30 16961709. https://doi.org/10.1016/j.quascirev.2011.03.014.CrossRefGoogle Scholar
Santín, C., Doerr, S.H., Merino, A., Bucheli, T.D., Bryant, R., Ascough, P., Gao, X., Masiello, C.A., 2017. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Scientific Reports 7, 11233. https://doi.org/10.1038/s41598-017-10455-2.CrossRefGoogle ScholarPubMed
Schlachter, K.J., Horn, S.P., 2010. Sample preparation methods and replicability in macroscopic charcoal analysis. Journal of Paleolimnology 44, 701708. https://doi.org/10.1007/s10933-009-9305-z.CrossRefGoogle Scholar
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671. https://doi.org/10.1038/nmeth.2089.CrossRefGoogle ScholarPubMed
Scott, A.C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 1139. https://doi.org/10.1016/j.palaeo.2009.12.012.CrossRefGoogle Scholar
Scott, A.C., Glasspool, I.J., 2005. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology 33, 589592. https://doi.org/10.1130/G21474.1.CrossRefGoogle Scholar
Scott, A.C., Glasspool, I.J., 2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology 70, 5366. https://doi.org/10.1016/j.coal.2006.02.009.CrossRefGoogle Scholar
Singh, G., Kershaw, A.P., Clark, R., 1981. Quaternary vegetation and fire history in Australia. In Gill, A.M., Groves, R.H., Noble, I.R. (Eds.), Fire and the Australian Biota. Australian Academy of Science, Canberra, pp. 2354.Google Scholar
Swain, A.M., 1973. A History of Fire and Vegetation in Northeastern Minnesota as Recorded in Lake Sediments 1. Quaternary Research 3, 383396. https://doi.org/10.1016/0033-5894(73)90004-5.CrossRefGoogle Scholar
Walker, M., Lowe, J., Blockley, S.P., Bryant, C., Coombes, P., Davies, S., Hardiman, M., Turney, C.S.M., Watson, J., 2012. Lateglacial and early Holocene palaeoenvironmental ‘events’ in Sluggan Bog, Northern Ireland: comparisons with the Greenland NGRIP GICC05 event stratigraphy. Quaternary Science Reviews 36, 124138. https://doi.org/10.1016/j.quascirev.2011.09.008.CrossRefGoogle Scholar
White, E.M., Hannus, L.A., 1981. Approximate method for estimating soil charcoal contents. Communications in Soil Science and Plant Analysis 12, 363371. https://doi.org/10.1080/00103628109367157.CrossRefGoogle Scholar
Whitlock, C., Anderson, R.S. 2003. Fire history reconstructions based on sediment records from lakes and wetlands. In: Veblen, T.T., Baker, W.L., Montenegro, G., and Swetnam, T.W., (Eds.), Fire and Climatic Change in the Americas. Volume 160: Ecological Studies. Springer-Verlag, New York, pp. 331.Google Scholar
Whitlock, C., Larsen, C., 2001. Charcoal as a fire proxy. In: Smol, J.P., Birks, H.J.B., Last, W.M., (Eds.), Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators. Springer, Netherlands, pp. 7597.Google Scholar
Winkler, M.G., 1985. Charcoal analysis for paleoenvironmental interpretation: a chemical assay. Quaternary Research 23, 313326. https://doi.org/10.1016/0033-5894(85)90038-9.CrossRefGoogle Scholar
Supplementary material: File

Tsakiridou et al. Supplementary Materials

Tsakiridou et al. Supplementary Materials

Download Tsakiridou et al. Supplementary Materials(File)
File 753.9 KB