Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T16:14:16.312Z Has data issue: false hasContentIssue false

Timing of the Middle-to-Upper Palaeolithic transition in the Iberian inland (Cardina-Salto do Boi, Côa Valley, Portugal)

Published online by Cambridge University Press:  19 June 2020

Thierry Aubry*
Affiliation:
Côa Parque, Fundação para a Salvaguarda e Valorização do Vale do Côa. Rua do Museu. 5150-610Vila Nova de Foz Côa, Portugal UNIARQ—Centro de Arqueologia Universidade de Lisboa, Faculdade de Letras. Alameda da Universidade, 1600-214Lisboa, Portugal
Luca Antonio Dimuccio
Affiliation:
UNIARQ—Centro de Arqueologia Universidade de Lisboa, Faculdade de Letras. Alameda da Universidade, 1600-214Lisboa, Portugal University of Coimbra, Centre of Studies in Geography and Spatial Planning (CEGOT), FLUC, Department of Geography and Tourism, Largo da Porta Férrea, 3004-530Coimbra, Portugal
António Fernando Barbosa
Affiliation:
Côa Parque, Fundação para a Salvaguarda e Valorização do Vale do Côa. Rua do Museu. 5150-610Vila Nova de Foz Côa, Portugal
Luís Luís
Affiliation:
Côa Parque, Fundação para a Salvaguarda e Valorização do Vale do Côa. Rua do Museu. 5150-610Vila Nova de Foz Côa, Portugal UNIARQ—Centro de Arqueologia Universidade de Lisboa, Faculdade de Letras. Alameda da Universidade, 1600-214Lisboa, Portugal
André Tomás Santos
Affiliation:
Côa Parque, Fundação para a Salvaguarda e Valorização do Vale do Côa. Rua do Museu. 5150-610Vila Nova de Foz Côa, Portugal UNIARQ—Centro de Arqueologia Universidade de Lisboa, Faculdade de Letras. Alameda da Universidade, 1600-214Lisboa, Portugal
Marcelo Silvestre
Affiliation:
Côa Parque, Fundação para a Salvaguarda e Valorização do Vale do Côa. Rua do Museu. 5150-610Vila Nova de Foz Côa, Portugal
Kristina Jørkov Thomsen
Affiliation:
Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, Denmark
Eike Rades
Affiliation:
Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, Denmark Nordic Laboratory for Luminescence Dating, Department of Geoscience, Aarhus University, Risø Campus, Denmark
Martin Autzen
Affiliation:
Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, Denmark
Andrew Sean Murray
Affiliation:
Nordic Laboratory for Luminescence Dating, Department of Geoscience, Aarhus University, Risø Campus, Denmark
*
*Corresponding author at: Côa Parque, Fundação para a Salvaguarda e Valorização do Vale do Côa, Rua do Museu, 5150-610Vila Nova de Foz Côa, Portugal. E-mail address: [email protected].

Abstract

The timing of the Neanderthal-associated Middle Palaeolithic demise and a possible overlap with anatomically modern humans (AMH) in some regions of Eurasia continues to be debated. The Iberian Peninsula is considered a possible refuge zone for the last Neanderthals, but the chronology of the later Middle Palaeolithic record has undergone revision and has increased the debate on the timing of Neanderthal extinction. Here we report on a study of the 5-m-thick archaeological stratigraphy of the Cardina-Salto do Boi, an open-air site located in inland Iberia, from which optically stimulated luminescence (OSL) ages were obtained for Middle and Upper Palaeolithic occupations preserved in overbank alluvial deposits. Geomorphology, archaeostratigraphy, stone-tool evolution, and OSL dating support the persistence of Neanderthals after 41 ka in central Iberia; the transition between the Middle Palaeolithic material culture and the AMH-associated Aurignacian blade and bladelet production is estimated to lie between 34.0 ± 2.0 ka and 38.4 ± 1.9 ka. Our results demonstrate that investigations focusing on different geomorphological situations are necessary to overcome the current limitations of the evidence and to establish more consistent models for Neanderthal disappearance and AMH expansion in the Iberian Peninsula.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, M.J., 1985. Thermoluminescence Dating. Academic Press, London.Google Scholar
Aitken, M.J., 1998. An Introduction to Optical Dating. Oxford University Press, Oxford.Google Scholar
Alcaraz-Castaño, A. 2015. Central Iberia around the Last Glacial Maximum: Hopes and Prospects. Journal of anthropological research 71(4), 565-578CrossRefGoogle Scholar
Alcaraz-Castaño, M., Alcolea-González, J., Kehl, M., Albert, R.M., Baena-Preysler, J., de Balbín-Behrmann, R., Cuartero, F., et al. , 2017. A context for the last Neandertals of interior Iberia: Los Casares cave revisited. PLoS ONE 12, e0180823.CrossRefGoogle ScholarPubMed
Anderson, L., Chesnaux, L., Rué, M, Picavet, R., Fernandes, P., Morala, A., Caux, S., Tallet, P., Caverne, J.B., Kawalek, E., 2016. Regards croisés sur la station aurignacienne de Brignol (Villeneuve-sur-Lot, Lot-et-Garonne, France): approches taphonomique, pétroarchéologique, technoéconomique et technofonctionnelle de l'industrie lithique. PALEO 27, 1142.CrossRefGoogle Scholar
Anderson, L., Reynolds, N., Teyssandier, N., 2019. No reliable evidence for a very early Aurignacian in Southern Iberia. Nature Ecology and Evolution 3, 713 doi:10.1038/s41559-019-0885-3.CrossRefGoogle ScholarPubMed
Angelucci, D.E., 2002. The Geoarchaeological Context. In: Zilhão, J., Trinkaus, E. (Eds.), Portrait of the artist as a Child. The Gravettian Human Skeleton from the Abrigo do Lagar Velho and its Archaeological Context. Trabalhos de Arqueologia 22, pp. 5891.Google Scholar
Angelucci, D.E., Anesin, D., Susini, D., Villaverde, V., Zapata, J., Zilhão, J., 2013. Formation processes at a high resolution middle Paleolithic site: Cueva Antón (Murcia, Spain). Quaternary International 315, 2441.CrossRefGoogle Scholar
Aubry, T., 2009. 200 séculos da história do Vale do Côa: incursões na vida quotidiana do caçadores-artistas do Paleolítico. Trabalhos de Arqueologia 52.Google Scholar
Aubry, T., Almeida, M., Neves, M.J., 2006. The Middle-to-Upper Palaeolithic transition in Portugal: An Aurignacian phase or not? Proceeding of the Symposium “Towards a definition of the Aurignacian”, Lisbon, Portugal. In: O. Bar-Yosef and J. Zilhão (eds.). Trabalhos de Arqueologia 45, pp. 95108.Google Scholar
Aubry, T., Dimuccio, L.A., Almeida, M., Neves, M.J., Angelucci, D., Cunha, L., 2011. Palaeoenvironmental forcing during the Middle-Upper Palaeolithic transition in Central-western Portugal. Quaternary Research 75, 6679.CrossRefGoogle Scholar
Aubry, T., Dimuccio, L.A., Bergadà, M., Sampaio, J.D., Sellami, F., 2010. Palaeolithic engravings and sedimentary environments in the Côa River Valley (Portugal): Implications for the detection, interpretation and dating of open-air rock art. Journal of Archaeological Science 37, 33063319.CrossRefGoogle Scholar
Aubry, T., Gameiro, C., Santos, A.T., Luís, L., 2017. Existe Azilense em Portugal? Novos dados sobre o Tardiglaciar e o Pré-Boreal no Vale do Côa. In Arnaud, J.M., Martins, A. (Eds.) Arqueologia em Portugal 2017: Estado da Questão. Lisboa: Associação dos Arqueólogos Portugueses, pp. 403418.Google Scholar
Aubry, T., Luís, L., Dimuccio, L.A., 2012a. Nature vs. Culture: present-day spatial distribution and preservation of open-air rock art in the Côa and Douro River Valleys (Portugal), Journal of Archaeological Science 39, 848866.CrossRefGoogle Scholar
Aubry, T., Luís, L., Mangado Llach, J., Matias, H., 2012b. We will be known by the tracks we leave behind: exotic lithic raw materials, mobility and social networking among the Côa Valley foragers (Portugal). Journal of Anthropological Archaeology 31, 528550.CrossRefGoogle Scholar
Aubry, T., Mangado Llach, X., Sellami, F., Sampaio, J.D., 2002. Open-air Rock-art. Territories and modes of exploitation during the Upper Paleolithic in the Côa Valley (Portugal). Antiquity 76, 6276.CrossRefGoogle Scholar
Auclair, M., Lamothe, M., Huot, S., 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37, 487492.CrossRefGoogle Scholar
Baena, J.P., Carrión, E., Torres, C.N., Vaquero, M.R., 2018. Mousterian inside the upper Paleolithic? The last interval of El Esquilleu (Cantabria, Spain) sequence. Quaternary International. https://doi.org/10.1016/j.quaint.2018.11.015.Google Scholar
Banerjee, D., Murray, A.S., Bøtter-Jensen, L., Lang, A., 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33, 7394.CrossRefGoogle Scholar
Bergadà, M.M., 2009. Análisis micromorfológico de la secuencia sedimentaria de Cardina I (Salto do Boi, Vila Nova de Foz Côa, Portugal). In Thierry Aubry (Ed.), 200 séculos da história do Vale do Côa: incursões na vida quotidiana do caçadores-artistas do Paleolítico. Trabalhos de Arqueologia 52, pp. 112–127.Google Scholar
Bicho, N., Cascalheira, J., Gonçalves, C., 2017. Early Upper Paleolithic colonization across Europe: Time and mode of the Gravettian diffusion. PLoS ONE 12(5): e0178506. https://doi.org/10.1371/journal.pone.0178506 .CrossRefGoogle ScholarPubMed
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Boëda, E., 1993. Le débitage Discoïde et le débitage Levallois récurrent centripète. Bulletin de la Société Préhistorique Française 90, 392404.CrossRefGoogle Scholar
Bøtter-Jensen, L., Thomsen, K.J., Jain, M., 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45, 253257.CrossRefGoogle Scholar
Braga, M.A.S., Paquet, H., Begonha, A., 2002. Weathering of granites in a temperate climate (NW Portugal): granitic saprolites and arenization. Catena 49, 4156.CrossRefGoogle Scholar
Bronger, A., Heinkele, T., 1990. Mineralogical and clay mineralogical aspects of loess research. Quaternary International 7–8, 3751.CrossRefGoogle Scholar
Brown, A.G., 1997. Alluvial geoarchaeology. Floodplain archaeology and environmental change. Cambridge Manuals in Archaeology, University Press, New York.CrossRefGoogle Scholar
Buylaert, J.P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.CrossRefGoogle Scholar
Buylaert, J.P., Murray, A.S., Thomsen, K.J., Jain, M., 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44, 560565.CrossRefGoogle Scholar
Cardoso, J.L., 2006. O complexo mustierense em Portugal. Zephyrus 59, 2150.Google Scholar
Carrión, J.S., Fernández, S., Jiménez-Arenas, J.M., Munuera, M., Ochando, J., Amorós, G., Ponce de León, M., et al. , 2019. The sequence at Carihuela Cave and its potential for research into Neanderthal ecology and the Mousterian in southern Spain. Quaternary Science Reviews 217, 194216.CrossRefGoogle Scholar
Chamley, H., 1989. Clay sedimentology. Berlin, Springer Verlang.CrossRefGoogle Scholar
Cortés-Sánchez, M., 2007. Cueva Bajondillo (Torremolinos). Secuencia cronocultural y paleoambiental del Cuaternario reciente de la Bahía de Málaga. Centro de Ediciones de la Diputación Provincial de Málaga.Google Scholar
Cortés-Sánchez, M., Jiménez-Espejo, F.J., Simón-Vallejo, M.D, Stringer, C., Francisco, M.C.L., García-Alix, A., Vera Peláez, J.L., et al. , 2019. An early Aurignacian arrival in southwestern Europe. Nature Ecology and Evolution. doi.org/10.1038/s41559-018-0753-6.CrossRefGoogle ScholarPubMed
Cunha, P.P., Martins, A.A., Buylaert, J.P., Murray, A.S., Gouveia, M.P., Font, E., Pereira, T., et al. ., 2019. The Lowermost Tejo River Terrace at Foz do Enxarrique, Portugal: A Palaeoenvironmental Archive from c. 60–35 ka and Its Implications for the Last Neanderthals in Westernmost Iberia. Quaternary 2, 129CrossRefGoogle Scholar
Cunha, P.P., Martins, A.A., Murray, A.S., Huot, S.; Raposo, L., 2008. Dating the Tejo river lower terraces in the Ródão area (Portugal) to assess the role of tectonics and uplift. Geomorphology 102, 4354.CrossRefGoogle Scholar
Daura, J.J., Sanz, M., García, N., Allué, E., Vaquero, M., Fierro, E., Carrión, J.S., et al. , 2012. Terrasses de la Riera dels Canyars (Gavà, Barcelona): the landscape of Heinrich Stadial 4 north of the “Ebro frontier” and implications for modern human dispersal into Iberia. Quaternary Science Reviews 60, 2648.CrossRefGoogle Scholar
Davidson, I., 1986. The geographical study of Late Palaeolithic stages in Eastern Spain. In: Bailey, G. and Callow, P. (Eds.), Stone Age Prehistory: Studies in Memory of Charles MacBurney. Cambridge: Cambridge University Press, pp. 95118.Google Scholar
Demars, P.Y., Laurent, P., 1992. Types d'outils lithiques du Paléolithique supérieur en Europe. Cahiers du Quaternaire 14, CNRS édition.Google Scholar
D'Errico, F., Sanchez Goñi, M.F., 2003. Neanderthal extinction and the millennial scale climatic variability of OIS 3. Quaternary Science Reviews 22, 769788.CrossRefGoogle Scholar
Deschamps, M., Zilhão, J., 2018. Assessing site formation and assemblage integrity through stone tool refitting at Gruta da Oliveira (Almonda karst system, Torres Novas, Portugal): A Middle Paleolithic case study, Plos One, 13, 0192423.CrossRefGoogle Scholar
Devièse, T., Karavanić, I., Comeskey, D., Kubiak, C., Korlević, P., Hajdinjak, M., Radović, S., et al. , 2017. Direct dating of Neanderthal remains from the site of Vindija Cave and implications for the Middle to Upper Paleolithic transition. Proceedings of the National Academy of Sciences 114: 1060610611.CrossRefGoogle ScholarPubMed
Dibble, H.L., Bar-Yosef, O. 1995. The Definition and Interpretation of Levallois Technology. Prehistory Press.Google Scholar
Diekmann, B., Petschick, R., Gingele, F.X., Fütterer, D.K., Abelmann, A., Gersonde, R., Mackensen, A., 1996. Clay mineral fluctuations in Late Quaternary sediments of the southeastern South Atlantic: Implications for past changes of deep-water advection. In: Wefer, G., Berger, W.H., Siedler, G., Webb, D. (Eds.), The South Atlantic: Present and Past Circulation. Heidelberg, Springer, pp. 621644.CrossRefGoogle Scholar
Esquevin, J., 1969. Influence de la composition chimique des Illites sur cristallinite. Bulletin du Centre de Recherches de Pau 3, 147153.Google Scholar
FAO-Isric, 1990. Guidelines for soil description. 3rd ed. FAO, Roma.Google Scholar
Ferreira, A.B., 1978. Planaltos e montanhas do norte da Beira. Memórias do Centro de Estudos Geográficos 4, Lisbon.Google Scholar
Finlayson, C., Pacheco, F.G., Rodríguez-Vidal, J., Fa, D.A., Gutierrez López, J.M., Santiago Pérez, A., Finlayson, G., et al. , 2006. Late survival of Neandertals at the southernmost extreme of Europe. Nature 443, 850853.CrossRefGoogle ScholarPubMed
Finlayson, C., Pacheco, F.G., Vidal, J.R., 2004. Did the moderns kill off the Neanderthals? A reply to F. d'Errico and Sánchez Goñi. Quaternary Science Reviews 23, 12051212.CrossRefGoogle Scholar
Fletcher, W., Sánchez-Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu Nebout, N., Huntley, B., Lawson, I., et al. , P.C., 2010. Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Sciences Reviews 29, 28392864.CrossRefGoogle Scholar
Foucher, P., San-Juan-Foucher, C., Oberlin, C., 2011. Les niveaux d'occupation gravettiens de Gargas (Hautes-Pyrénées): Nouvelles données chronostratigraphiques. In: A la recherche des identités gravettiennes: actualités, questionnements et perspectives. Actes de la Table Ronde sur le Gravettien en France et dans les pays limitrophes, Aix-En-Provence, 6–8 octobre 2008. Mémoire LII de la Société Préhistorique Française, pp. 373–385.Google Scholar
Galván, B., Hernández, C.M., Mallol, C., Mercier, N., Sistiaga, A., Soler., V., 2014. New evidence of early Neanderthal disappearance in the Iberian Peninsula. Journal of Human Evolution 75, 627.CrossRefGoogle ScholarPubMed
Gingele, F.X., 1996. Holocene climatic optimum in Southwest Africa—evidence from the marine clay mineral record. Palaeogeography, Palaeoclimatology, Palaeocology 122, 7787.CrossRefGoogle Scholar
Goldberg, P., Macphail, R.I., 2006. Practical and theoretical geoarchaeology. Blackwell Publishing. London.Google Scholar
Guérin, G., Mercier, N., Adamiec, G., 2011. Dose-rate conversion factors: update. Ancient TL 29: 58.Google Scholar
Higham, T., Douka, K., Wood, R., Bronk Ramsey, C., Brock, F., Basell, L., Camps, M., et al. , 2014. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306309.CrossRefGoogle ScholarPubMed
Higham, T.F.G., Jacobi, R.M., Basell, L., Bronk Ramsey, C., Chiotti, L., Nespoulet, R., 2011. Precision dating of the Palaeolithic: A new radiocarbon chronology for the Abri Pataud (France), a key Aurignacian sequence. Journal of Human Evolution 61, 549563.CrossRefGoogle Scholar
Hofman, J.L., Enloe, J.G., 1992. Piecing Together the Past: Application of Refitting Studies in Archaeology. BAR International Series 578.CrossRefGoogle Scholar
Hublin, J.J., 2017. The last Neanderthal. Proceedings of the National Academy of Sciences 114: 1052010522.CrossRefGoogle ScholarPubMed
Hublin, J.J., Barroso Ruiz, C., Medina Lara, P., Fontugne, M., Reys, J.L., 1995. The Mousterian site of Zafarraya (Andalucia, Spain): Dating and implication on the palaeolithic peopling process of western Europe. Comptes Rendus de l'Académie des Sciences de Paris 321 (IIa), 931936.Google Scholar
Huntley, D.J., Baril, M.R., 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 1113.Google Scholar
Jennings, R., Finlayson, C., Darren, F., Finlayson, G. 2011. Southern Iberia as a refuge for the last Neanderthal populations. Journal of Biogeography 38 (10), 18731885.CrossRefGoogle Scholar
Jiménez-Espejo, F.J., Rodríguez-Vidal, J., Finlayson, C., Martínez-Ruiz, F., Carrión, J.S., García-Alix, A., Paytan, A., et al. ., 2013. Environmental conditions and geomorphologic changes during the Middle-Upper Paleolithic in the southern Iberian Peninsula. Geomorphology 180–181, 205216.CrossRefGoogle Scholar
Kahle, M., Kleber, M., Jahn, R., 2002. Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma 109, 191205.CrossRefGoogle Scholar
Keeley, H.C.M., Macphail, R.I. 1981. A Soil Handbook for Archaeologists. Bulletin of the Institute of Archaeology London, 225243.Google Scholar
Kehl, M., Burow, C., Hilgers, A., Navazo, M., Pastoors, A., Weniger, G.C., Wood, R., Jordá Pardo, J.F., 2013. Late Neandertals at Jarama VI (Central Iberia)? Quaternary Research 80, 218234.CrossRefGoogle Scholar
Keller, W.D., 1970. Environmental aspects of clay minerals. Journal of Sedimentary Petrolology 40, 788813.Google Scholar
Klaric, L., 2015. Regional groups in the European Middle Gravettian: A reconsideration of the Rayssian technology. Antiquity 81, 176190.CrossRefGoogle Scholar
Kübler, B., Jaboyedoff, M., 2000. Illite crystallinity. Comptes Rendue de l'Académie des Sciences 331, 7589.Google Scholar
Liu, X., Sun, Y., Vandenberghe, J., Li, Y., An, Z., 2018. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau. Aeolian Research 32, 202209.CrossRefGoogle Scholar
Mallol, C., Hernández, C.M., Machado, J., 2012. The significance of stratigraphic discontinuities in Iberian Middle-to-Upper Palaeolithic transitional sites. Quaternary International 275, 413.CrossRefGoogle Scholar
Mangado Llach, X., 2002. La Caracterización y el Aprovisionamiento de los Recursos Abióticos en la Prehistoria de Cataluña: Las Materias Primas Silíceas del Paleolítico Superior Final y el Epipaleolítico. PhD dissertation, University of Barcelona.Google Scholar
Marín-Arroyo, A.B., Rios-Garaizar, J., Straus, L.G., Jones, J.R., de la Rasilla, M., González Morales, M.R., Manuel, R., Richards, M., Altuna, J., Mariezkurrena, K., Ocio, D., 2018. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE 13, e0194708. https://doi.org/10.1371/journal.pone.0194708.CrossRefGoogle ScholarPubMed
Maroto, J., Vaquero, M., Arrizabalaga, A., Baena, J., Baquedano, E., Jordá, J.F.P., Brugués, R.J., et al. , 2012. Current issues in late Middle Palaeolithic chronology: New assessments from Northern Iberia. Quaternary International 247, 1525.CrossRefGoogle Scholar
Mercier, N., Valladas, H., Aubry, T., Zilhão, J., Jorons, J.L., Reyss, J.L., Sellami, F., 2006. Fariseu: first confirmed open-air paleolithic parietal art site in the Côa Valley (Portugal). Antiquity 80, 310. http://antiquity.ac.uk/ProjGall/mercier/index.htm.Google Scholar
Michel, A., 2010. L'Aurignacien récent (post-ancien) dans le Sud-Ouest de la France: variabilité des productions lithiques. Révision taphonomique et techno-économique des sites de Caminade-Est, Abri Pataud, Roc-de-Combe, Le Flageolet I, La Ferrassie et Combemenue. PhD dissertation, Bordeaux I University.Google Scholar
Moore, D., Reynolds, R., 1997. X-Ray-Diffraction and the Identification and Analysis of Clay Minerals. Univsity Press, Oxford.Google Scholar
Moore, R.C.A., 1949. Meaning of facies. In: Longwell, C.A.R. (Ed.), Sedimentary Facies in Geological History, vol. 39. Geological Society of America Memoir, 1–34.CrossRefGoogle Scholar
Morala, A., Lenoir, M., Turq, A., 2005. Production et utilisation de supports normalisés lamino-lamellaires dans la chaîne opératoire des grattoirs Caminade du site du Pigeonnier à Gensac (Gironde. France). In: Actes du colloque, Productions lamellaires attribuées à L'Aurignacien: Chaînes opératoires et perspectives techno-culturelles, XIV° Congrès de l'UISP, Lièges 28 septembre 2001. Archéologiques 1, Luxembourg, pp. 257–271.Google Scholar
Mourre, V., 2003 Discoïde ou pas Discoïde? Réflexions sur la pertinence des critères techniques définissant le débitage Discoïde, in Peresani, M. (Ed.), Discoid Lithic Technology—Advances and implications, Oxford, BAR International Series 1120, pp. 118.Google Scholar
Murray, A.S., Helsteld, L.M., Autzen, M., Jain, M., Buylaert, J.P., 2018. Measurement of natural radioactivity: Calibration and performance of a high-resolution gamma spectrometry facility. Radiation Measurements 120, 215220.CrossRefGoogle Scholar
Murray, A.S., Marten, R., Johnston, A., Martin, P., 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115, 263288.CrossRefGoogle Scholar
Murray, A.S., Thomsen, K.J., Masuda, N., Buylaert, J.P., Jain, M., 2012. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements 47, 688696.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Paton, T.R., 1978. The Formation of Soil Material. George Allen and Unwin Press, London.Google Scholar
Pe-Piper, G., Dolansky, L., Piper, D.J.W., 2005. Sedimentary environment and diagenesis of the Lower Cretaceous Chas-wood Formation, southeastern Canada: The origin of kaolin-rich mudstones. Sedimentary Geology 178, 7597.CrossRefGoogle Scholar
Pelegrin, J., 1995. Technologie lithique: le Châtelperronien de Roc-de-Combe (Lot) et de La Côte (Dordogne). Cahiers du Quaternaire 20, Editions CNRS, Paris.Google Scholar
Peña Alonso, P., 2010. Sobre la unidad tecnológica del Gravetiense en la Península Ibérica: implicaciones para el conocimiento del Paleolítico Superior inicial. Phd dissertation, Universidad Complutense de Madrid.Google Scholar
Peña Alonso, P., 2019. Dating on its own cannot resolve hominin occupation patterns. Nature Ecology and Evolution 3, 712. doi:10.1038/s41559-019-0886-2.CrossRefGoogle Scholar
Peña Alonso, P., Vega Toscano, G., 2013. The Early Upper Paleolithic puzzle in Mediterranean Iberia. Quatär 60, 85106.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Qin, X., Cai, B, Liu, T., 2005. Loess record of the aerodynamic environment in the east Asia monsoon area since 60,000 years before present. Journal of Geophysical Research: Solid Earth 110, B01204.CrossRefGoogle Scholar
Raposo, L., 1995. Ambientes, territorios y subsistencia en el paleolítico medio de Portugal, Complutum 6, 5775.Google Scholar
Rasmussen, O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausena, H.B., Cvijanovic, I., et al. , 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Review 106, 1428.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Ricci Lucchi, F., 1980. Sedimentologia. Parte III. Ambienti Sedimentari e Facies. Seconda edizione. CLUEB, Cooperativa Libraria Universitaria Editrice Bologna.Google Scholar
Rigaud, J.Ph., 1982. Le Paléolithique en Périgord: les données du Sud-Ouest sarladais et leurs implications. Phd dissertation, Bordeaux I University, 2 vol.Google Scholar
Rigaud, J.Ph., Simek, J., Delpech, F., Texier, J.P., 2016. The Aurignacian and Gravettian in northern Aquitaine: the contribution of Flageolet I. PALEO, 27, 265295.Google Scholar
Sepulchre, P., Ramstein, G., Kageyama, M., Vanhaeren, M., Krinner, G., Sánchez-Goñi, M.F., Errico, F., 2007. H4 abrupt event and late Neanderthal presence in Iberia. Earth and Planetary Science Letters 258 (1–2), 283292.CrossRefGoogle Scholar
Silva, A.F., Ribeiro, M.L., 1991. Carta Geológica de Portugal em escala 1:50,000 e Notícia explicativa da Folha 15-A: Vila Nova de Foz Côa, Serviço Geológico de Portugal, Lisbon.Google Scholar
Singer, A., 1980. The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews 15, 303326.CrossRefGoogle Scholar
Singer, A., 1984. The paleoclimatic interpretation of clay minerals in sediments—a review. Earth-Science Reviews 21, 251293.CrossRefGoogle Scholar
Sitzia, L., Bertran, P., Sima, A, Chery, P, Queffelec, A., Rousseau, D.D., 2017. Dynamics and sources of last glacial aeolian deposit in southwest France derived from dune patterns, grain-size gradients and geochemistry, and reconstruction of efficient wind directions. Quaternary Science Review 170, 250268.CrossRefGoogle Scholar
Sonnevilles-Bordes, D. de, Mortureux, B., 1956. Outils aurignaciens nouveaux et rares. L'Anthropologie, 60, 574578.Google Scholar
Straus, L., Bicho, N., Winegardner, A., 2000. The Upper Paleolithic settlement of Iberia: first generation maps. Antiquity 74, 553566.CrossRefGoogle Scholar
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z., Su, R., 2002. Grainsize distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of sedimentary components. Sedimentary Geology 152, 262277.CrossRefGoogle Scholar
Thiébaut, C., 2007. Le Moustérien à denticulés des années 1950 à nos jours: définitions et caractérisation. Bulletin de la Société Préhistorique Française 104, 461481.CrossRefGoogle Scholar
Thiel, C., Buylaert, J.P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S., Frechen, M., 2011. Luminescence dating of the Stratzing loess profile (Austria) e testing the potential of an elevated temperature post-IR IRSL protocol. Quat. Int. 234, 23-31.CrossRefGoogle Scholar
Thomsen, K.J., Murray, A.S., Jain, M., Bøtter-Jensen, L., 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43, 14741486.CrossRefGoogle Scholar
Torres, V., Vandenberghe, J., Hooghiemstra, H., 2005. An environmental reconstruction of the sediment infill of the Bogota basin (Columbia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeocology 226, 127148.CrossRefGoogle Scholar
Trinkaus, E., Maki, J., Zilhão, J., 2007. Middle Paleolithic Human Remains from the Gruta da Oliveira (Torres Novas), Portugal. American Journal of Physical Anthropology 134, 263273.CrossRefGoogle Scholar
Valladas, H., Mercier, N., Froget, L., Jorons, J.L., Reyss, J.L., Aubry, T., 2001. TL Dating of Upper Paleolithic Sites in the Côa Valley (Portugal). Quaternary Science Reviews 20, 939943.CrossRefGoogle Scholar
Villa, P., 1982. Conjoinable pieces and site formation processes. American Antiquity 47, 277290.CrossRefGoogle Scholar
Villaverde, V., Real, C., Roman, D., Albert, R.M., Badal, E., Bel, M.A., Bergadà, M.M, et al. , 2019. The early Upper Palaeolithic of Cova de les Cendres (Alicante, Spain). Quaternary International 515, 92124CrossRefGoogle Scholar
Wolf, D., Kolb, T., Alcaraz-Castaño, M., Heinrich, S., Baumgart, P., Calvo, R., Sánchez, J., et al. , 2018. Climate deteriorations and Neanderthal demise in interior Iberia. Nature. Scientific Report 8, article 7048.CrossRefGoogle Scholar
Wolff, E.W., Chappellaz, J., Blunier, T., Rasmussen, S.O., Svensson, A., 2010. Millennial-scale variability during the last glacial: the ice core record. Quaternary Science Reviews 29, 28282838.CrossRefGoogle Scholar
Wood, R., Arrizabalaga, A., Camps, M., Fallon, S., Iriarte-Chiapusso, M.J., Jones, R., Maroto, J., et al. , 2014. The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L'Arbreda, Labeko Koba and La Viña. Journal of Human Evolution 69, 91109.CrossRefGoogle ScholarPubMed
Wood, R., Barroso-Ruíz, C., Caparrós, M., Jordá Pardo, J.F., Galván Santos, B., Higham, T., 2013. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proceedings of the National Academy of Sciences 110, 27812786.CrossRefGoogle ScholarPubMed
Xiao, J.L., Fan, J.W., Zhai, D.Y., Wen, R.L., Qin, X.G., 2015. Testing the model for linking grain-size component to lake level status of modern clastic lakes. Quaternary International 355, 3443.CrossRefGoogle Scholar
Zilhão, J., 1997. O Paleolítico Superior da Estremadura Portuguesa, 2 Vols. Edições Colibri, Lisboa.Google Scholar
Zilhão, J., 2006a. Chronostratigraphy of the Middle-to-Upper Paleolithic Transition in the Iberian Peninsula. Pyrenae 37, 784.Google Scholar
Zilhão, J., 2006b. The Aurignacian of Portugal: a Reappraisal. In: Baquedano, E. Maillo-Fernández, J.M. (Eds.), Homenagem a Victória Cabrera. Zona Arqueológica 7, Vol I, pp. 372–395.Google Scholar
Zilhão, J. 2001. Middle Palaeolithic Settlement Patterns in Portugal. In: Conard, N. (Ed.). Settlement Dynamics of the Middle Palaeolithic and Middle Stone Age, Tübingen, Kerns Verlag, p. 597-608.Google Scholar
Zilhão, J., 2000. The Ebro Frontier: A model for the late extinction of Iberian neanderthals. In: Stringer, C.B., Barton, R.N., Finlayson, J.C. (Eds.), Neanderthals on the Edge: Papers from a Conference Marking the 150th Anniversary of the Forbes' Quarry Discovery, Gibraltar. Oxbow Books, Oxford, pp. 111122.Google Scholar
Zilhão, J., Ajas, A., Badal, E., Burow, C., Kehl, M., López-Sáez, J. A., Pimenta, C., et al. , 2016. Cueva Antón: A multi-proxy MIS-3 to MIS-5: a paleoenvironmental record for SE Iberia. Quaternary Science Reviews, 146, 251273.CrossRefGoogle Scholar
Zilhão, J., Anesin, D., Aubry, T., Badal, E., Cabanes, D., Kehl, M., Klasen, N, et al. , 2017. Precise dating of Middle-to-Upper Palaeolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. Helyion (3).CrossRefGoogle Scholar
Zilhão, J.; Aubry, T.; Carvalho, A. M. F.; Zambujo, G., Almeida, F. 1995. O sítio arqueológico paleolítico do Salto do Boi (Cardina, Santa Comba, Vila Nova de Foz Côa), Trabalhos de Antropologia e Etnologia 35(4), pp. 471-485.Google Scholar
Zilhão, J., Cardoso, J.L., Pike, A.W.G., Weninger, B., 2011. Gruta Nova da Columbeira (Bombarral, Portugal): Site stratigraphy, age of the Mousterian sequence, and implications for the timing of Neanderthal extinction in Iberia. Quartär 58, 93112.Google Scholar
Zilhão, J., Davis, S.J.M., Duarte, C., Soares, A.M.M., Steier, P., Wild, E., 2010. Pego do Diabo (Loures, Portugal): Dating the Emergence of Anatomical Modernity in Westernmost Eurasia. PLoS ONE, 5, 8880.CrossRefGoogle ScholarPubMed
Zilhão, J., Pettitt, P., 2006. On the new dates for Gorham's Cave and the late survival of Iberian Neanderthals. Before Farming: The Archaeology and Anthropology of Hunter-Gatherers 3, pp. 19.CrossRefGoogle Scholar
Zilhão, J., Trinkaus, E., 2002. (Eds.). Portrait of the Artist as a Child. The Gravettian Human Skeleton from the Abrigo do Lagar Velho. Lisboa, IPA, Trabalhos de Arqueologia, 22.Google Scholar
Supplementary material: PDF

Aubry et al. Supplementary Materials

Aubry et al. Supplementary Materials

Download Aubry et al. Supplementary Materials(PDF)
PDF 1.3 MB