Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T18:29:46.142Z Has data issue: false hasContentIssue false

Tephrostratigraphy of the late glacial and Holocene sediments of Puyehue Lake (Southern Volcanic Zone, Chile, 40°S)

Published online by Cambridge University Press:  20 January 2017

Sébastien Bertrand
Affiliation:
Clays and Paleoclimate Research Unit, University of Liège, Belgium
Julie Castiaux
Affiliation:
Clays and Paleoclimate Research Unit, University of Liège, Belgium
Etienne Juvigné
Affiliation:
Geomorphology and Quaternary Geology, University of Liège, Belgium

Abstract

We document the mineralogical and geochemical composition of tephra layers identified in the late Quaternary sediments of Puyehue Lake (Southern Volcanic Zone of the Andes, Chile, 40°S) to identify the source volcanoes and to present the first tephrostratigraphic model for the region. For the last millennium, we propose a multi-criteria correlation model based on five tephra layers identified at seven coring sites. The two upper tephras are thin fine-grained green layers composed of more than 80% rhyodacitic glass shards, and associated to the AD 1960 and AD 1921–22 eruptions of the Puyehue-Cordon de Caulle volcanic complex. The third tephra is a sandy layer dominated by orthopyroxene, and related to the AD 1907 eruption of Rininahue maar. An olivine-rich tephra was deposited at the end of the 16th century, and a tephra characterized by a two-pyroxene association marks the second half of the first millennium AD. In addition, we detail the tephra succession of an 11.22-m-long sediment core covering the last 18,000 yr. The results demonstrate that the central province of the Southern Volcanic Zone has been active throughout the last deglaciation and the Holocene, with no increase in volcanic activity during glacial unloading.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnaud, F., Magand, O., Chapron, E., Bertrand, S., Boës, X., Charlet, F., Mélières, M.A., (2006). Radionuclides dating (210Pb, 137Cs, 241Am) of recent lake sediments in a highly active geodynamic setting (lakes Puyehue and Icalma — Chilean Lake District). Science of the Total Environment 366, 837850.Google Scholar
Besoain, E., (1985). Mineralogía de los suelos volcánicos del centro-sur de Chile.Suelos volcánicos de Chile. Tosso, J. Suelos volcanicos de Chile Instituto de Investigaciones Agropecuarias (INIA), Santiago.108152.Google Scholar
Bertrand, S., Fagel, N., (2008). Nature, origin, transport and deposition of andosol parent material in south-central Chile (36–42°S). Catena 73, 1022.CrossRefGoogle Scholar
Bertrand, S., Boës, X., Castiaux, X., Charlet, F., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B., Fagel, N., (2005). Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 yr and its climatic significance. Quaternary Research 64, 163175.CrossRefGoogle Scholar
Bertrand, S., Charlet, F., Charlier, B., Renson, V., Fagel, N., (2008). Climate variability of Southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S). Journal of Paleolimnology 39, 179195.Google Scholar
Blott, S.J., Pye, K., (2001). Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments: Earth Surface Processes and Landforms 26. 12371248.Google Scholar
Boës, X., Fagel, N., (2008). Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. Journal of Paleolimnology 39, 237252.Google Scholar
Borchardt, G.A., Aruscavage, P.J., Mallard, H.P. Jr.(1972). Correlation of the Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation analysis. Journal of Sedimentary Petrology 42, 301306.Google Scholar
Boygle, J., (1999). Variability of tephra in lake and catchment sediments, Svínavatn, Iceland. Global and Planetary Change 21, 129149.Google Scholar
Calderoni, G., Turi, B., (1998). Major constraints on the use of radiocarbon dating for tephrochronology. Quaternary International 47–48, 153159.Google Scholar
Castellano, E., Becagli, S., Jouzel, J., Migliori, A., Severi, M., Steffensen, J.P., Traversi, R., Udisti, R., (2004). Volcanic eruption frequency over the last 45 ky as recorded in Epica-Dome C ice core (East Antarctica) and its relationship with climatic changes. Global and Planetary 42, 195205.Google Scholar
Chapron, E., Juvigné, E., Mulsow, S., Ariztegui, D., Magand, O., Bertrand, S., Pino, M., Chapron, O., (2007). Recent clastic sedimentation in Lake Puyehue (Chilean Lake District, 40.5°S). Sedimentary Geology 201, 365385.CrossRefGoogle Scholar
Charlet, F., De Batist, M., Chapron, E., Bertrand, S., Pino, M., Urrutia, R., (2008). Seismic-stratigraphy of Lago Puyehue (Chilean Lake District): new views on its deglacial and Holocene evolution. Journal of Paleolimnology 39, 163177.Google Scholar
Daga, R., Guevara, S.R., Sánchez, M.L., Arribére, M., (2006). Geochemical characterization of volcanic ashes from recent events in Northern Patagonia Andean Range by INAA. Journal of Radioanalytical and Nuclear Chemistry 270, (3) 677694.Google Scholar
De Batist, M., Fagel, N., Loutre, M.F., Chapron, E., (2008). A 17,900-year multi-proxy lacustrine record of Lago Puyehue (Chilean Lake District): introduction. Journal of Paleolimnology 39, 151161.Google Scholar
de Fontaine, C.S., Kaufman, D.S., Anderson, R.S., Werner, A., Waythomas, C.F., Brown, T.A., (2007). Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska. Quaternary Research 68, 6478.Google Scholar
Ducloux, E.H., (1908). Ceniza del volcán Rininahue. Revista del museo de La Plata 15, 4953.Google Scholar
Froggatt, P.C., (1992). Standardisation of the chemical analysis of tephra deposits.Report on the ICCT working group. Quaternary International 13–14, 9396.Google Scholar
Gerlach, D.C., Frey, F.A., Moreno, H., Lopez-Escobar, L., (1988). Recent volcanism in the Puyehue-Cordon Caulle Region, Southern Andes, Chile (40.5°S): petrogenesis of evolved lavas. Journal of Petrology 29, 333382.Google Scholar
González-Ferrán, O., (1994). Volcanes de Chile. Instituto Geografico militar, Santiago, Chile. 635 pp.Google Scholar
Haberle, S.G., Lumley, S.H., (1998). Age and origin of tephras recorded in postglacial lake sediments to the west of the southern Andes, 44°S to 47°S. Journal of Volcanology and Geothermal Research 84, 239256.Google Scholar
Hajdas, I., (1993). Extension of the radiocarbon calibration curve by AMS dating of laminated sediments of lake Soppensee and lake Holzmaar. Unpublished PhD thesis, ETH Zurich, Switzerland.Google Scholar
Hall, K., (1982). Rapid deglaciation as an initiator of volcanic activity: an hypothesis. Earth Surface Processes and Landforms 7, 4551.Google Scholar
Hallet, D.J., Mathewes, R.W., Foit, F.F. Jr.(2001). Mid-Holocene Glacier Peak and Mount St. Helens We tephra layers detected in lake sediments from Southern British Columbia using high resolution techniques. Quaternary Research 55, 284292.Google Scholar
Hickey, R.L., Gerlach, D.C., Frey, F.A., (1984). Geochemical variations in volcanic rocks from central south Chile (33°S-42°S): implications for their petrogenesis. Harmon, R.S., Barreiro, D.A. Andean Magmatism: Chemical and isotopic constraints Shiva Publications Limited, Cheshire, United Kingdom.7295.CrossRefGoogle Scholar
Hodder, A.P.W., De Lande, P.J., Lowe, D.J., (1991). Dissolution and depletion of ferromagnesian minerals from Holocene tephra layers in an acid bog, New Zealand, and implications for tephra correlation. Journal of Quaternary Science 6, 195208.Google Scholar
Hodgson, D.A., Dyson, C.L., Jones, V.J., Smellie, J.L., (1998). Tephra analysis of sediments from Midge Lake (South Shetland Islands) and Sombre Lake (South Orkney Islands), Antarctica. Antarctic Science 10, 1320.Google Scholar
Hunt, J.B., Hill, P.G., (1993). Tephra geochemistry: a discussion of some persistent analytical problems. The Holocene 3, 271278.Google Scholar
Juvigné, E., (1983). Les variations minéralogiques dans les retombées de 1982 du volcan El Chichon (Chiapas, Mexique) et leur intérêt pour la téphrostratigraphie. Annales de la Société géologique de Belgique 106, 311325.Google Scholar
Juvigné, E., (1993). Contribution " la téphrostratigraphie du Quaternaire et son application à la géomorphologie.. Mem. Expl. Cartes Geol. Min. Belgique, Bruxelles, 36, 66 pp.Google Scholar
Juvigné, E., Shipley, S., (1983). Distribution of heavy minerals in the downwind lobe of the May 18, 1980 eruption of the Mount St Helens (Washington, USA). Eiszeitalter und Gegenwart 33, 17.Google Scholar
Kilian, R., Hohner, M., Biester, H., Wallrabe-Adams, H.J., Stern, C.J., (2003). Holocene peat and lake sediment tephra record from the southernmost Chilean Andes (53–55°S). Revista Geologica de Chile 30, 2337.Google Scholar
Lara, L.E., Naranjo, J.A., Moreno, H., (2004). Rhyodacitic fissure eruption in Southern Andes (Cordon Caulle; 40.5°S) after the 1960 (MW: 9.5) Chilean earthquake: a structural interpretation. Journal of Volcanology and Geothermal Research 138, 127138.Google Scholar
Lara, L.E., Moreno, H., Naranjo, J.A., Matthews, S., Pérez de Arce, C., (2006). Magmatic evolution of the Puyehue-Cordon de Caulle Volcanic Complex (40°S), Southern Andean Volcanic Zone: From shield to unusual rhyolitic fissure volcanism. Journal of Volcanology and Geothermal Research 157, 343366.Google Scholar
Laugenie, C., (1982). La région des lacs, Chili méridional. Unpublished PhD Thesis, Université de Bordeaux III, France.Google Scholar
Le Bas, N.J., Le Maitre, R.W., Streckeinsen, A., Zanetin, B., (1986). A chemical classification of volcanic rocks based on Total Alkali-Silica diagram. Journal of Petrology 27, 745750.Google Scholar
Litt, T., Schmincke, H.U., Kromer, B., (2003). Environmental response to climatic and volcanic events in central Europe during the Weischselian Lateglacial. Quaternary Science Reviews 22, 732.Google Scholar
Lopez-Escobar, L., (1984). Petrology and geochemistry of volcanic rocks of the southern Andes. Harmon, R.S., Barreiro, B.A. Andean Magmatism - Chemical and Isotopic Constraints Shiva Publications Limited, Cheshire, United Kingdom.4771.Google Scholar
Lopez-Escobar, L., Moreno, H., (1981). Erupción de 1979 del volcan Mirador, Andes del Sur, 40°21' S: características geoquímicas de las lavas y xenolitos graníticos. Revista geológica de Chile 13–14, 1733.Google Scholar
Lopez-Escobar, L., Frey, F.A., Vergara, M., (1977). Andesites and high-alumina basalts from the central–south Chile High Andes: geochemical evidence bearing on their petrogenesis. Contributions to Mineralogy and Petrology 63, 199228.CrossRefGoogle Scholar
Lopez-Escobar, L., Cembrano, J., Moreno, H., (1995). Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37–46°S). Revista Geologica de Chile 22, 219234.Google Scholar
McCulloch, R.D., Bentley, M.J., Purves, R.S., Hulton, N.R.J., Sudgen, D.E., Clapperton, C.M., (2000). Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 15, 409417.Google Scholar
Moreno, H., (1977). Geologia del area volcanica Puyehue Carran en Los Andes del Sur de Chile. PhD thesis, Univ. de Chile, Santiago. 170 pp.Google Scholar
Naranjo, J., Stern, C., (2004). Holocene tephrochronology of the southernmost part (42°30’–45°S) of the Andean Southern Volcanic Zone. Revista Geologica de Chile 31, 225240.Google Scholar
Newnham, R.M., Lowe, D.J., (1999). Testing the synchroneity of pollen signals using tephrostratigraphy. Global and Planetary Change 21, 113128.Google Scholar
Newton, A.J., Metcalfe, S.E., (1999). Tephrochronology of the Toluca Basin, central Mexico. Quaternary Science Reviews 18, 10391059.Google Scholar
Ortega-Guerrero, B., Newton, A.J., (1998). Geochemical characterisation of Late Pleistocene and Holocene tephra layers from the basin of Mexico, Central Mexico. Quaternary Research 50, 90106.Google Scholar
Rampino, M.R., Self, S., Fairbridge, R.W., (1979). Can rapid climatic change cause volcanic eruptions? Science 206, 826829.Google Scholar
Schmidt, R., van den Bogaard, C., Merkt, J., Müller, J., (2002). A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: the Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate. Quaternary International 88, 4556.Google Scholar
Shane, P., Lian, O.B., Augustinus, P., Chisari, R., Heijnis, H., (2002). Tephrostratigraphy and geochronology of a ca. 120 ka terrestrial record at Lake Poukawa, North Island, New Zealand. Global and Planetary Change 33, 221242.Google Scholar
Sterken, M., (2003). Changes in diatom preservation, community structure and production after tephra deposition in Lago Puyehue (Chile): A paleolimnological approach. Unpublished M.Sc. thesis, UGent, Belgium.Google Scholar
Stern, C.R., (1989). Pliocene to present migration of the volcanic front, Andean Southern Volcanic Zone. Revista Geologica de Chile 16, 145162.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., (1998). Intcal98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 10411083.Google Scholar
Telford, R.J., Barker, P., Metcalfe, S., Newton, A., (2004). Lacustrine responses to tephra deposition: examples from Mexico. Quaternary Science Reviews 23, 23372353.Google Scholar
Thornton, C., Tuttle, O., (1960). Chemistry of igneous rocks. Part I, Differentiation Index. American Journal of Sciences 258, 664684.Google Scholar
Wright, C., Mella, A., (1963). Modifications to the soil pattern of south-central Chile resulting from seismic and associated phenomena during the period May to August 1960. Bulletin of the Seismological Society of America 53, 13671402.Google Scholar
Wulf, S., Kraml, M., Brauer, A., Keller, J., Negendank, J.F.W., (2004). Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quaternary International 122, 730.Google Scholar
Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S.I., Twickler, M.S., (1996). A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research 45, 109118.CrossRefGoogle Scholar
Supplementary material: PDF

Bertrand et al. Supplementary Material

Supplementary Material

Download Bertrand et al. Supplementary Material(PDF)
PDF 253.9 KB