Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T16:44:49.042Z Has data issue: false hasContentIssue false

Tephrostratigraphy of the Bedded Tuff Member (Kapthurin Formation, Kenya) and the nature of archaeological change in the later middle Pleistocene

Published online by Cambridge University Press:  20 January 2017

Christian A. Tryon*
Affiliation:
Department of Anthropology, George Washington University, 2110 G St. NW, Washington, DC 20052, USA Human Origins Program, National Museum of Natural History, Smithsonian Institution MS 112, Washington, DC 20560-0112, USA
Sally McBrearty
Affiliation:
Department of Anthropology, University of Connecticut, Box U-2176, Storrs, CT 06269, USA
*
*Corresponding author. Department of Anthropology, George Washington University, 2110 G St. NW, Washington, DC 20052, USA. Fax: +1 202 994 6097. E-mail addresses:[email protected] (C.A. Tryon), [email protected] (S. McBrearty).

Abstract

Correlation of volcaniclastic deposits of the Bedded Tuff Member (K4) of the Kapthurin Formation (Kenya) provides the means to assess the nature of archaeological change during the later middle Pleistocene, a time period critical to human evolution but poorly represented at other African localities. Field stratigraphic evidence, and petrographic and electron microprobe geochemical analyses of volcanic glass and phenocrysts, define eight subdivisions of K4 tephra. These include a succession of deposits from a local volcanic source that erupted intermittently, as well as other tuffs likely from different sources outside the Baringo basin. Upper portions of the Bedded Tuff Member date to ∼235,000 yr. The Bedded Tuff Member is underlain by sediments that include the Grey Tuff, dated to 509,000 ± 9000 yr. The tephrostratigraphic framework defined here is used to place Acheulian and Middle Stone Age (MSA) archaeological sites in chronological order. Results show the persistence of Acheulian large cutting tool manufacture after the advent of points, considered an MSA artifact type. Two assemblages from the site of Koimilot record the appearance at ∼200,000–250,000 yr of a variety of Levallois flake production methods, an integral if incompletely understood feature of the MSA, here likely derived from local technological antecedents. Combined evidence from the tools and flake production methods suggest an incremental and mosaic pattern of change in hominin adaptive strategies during the Acheulian–MSA transition.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, B.H., (1987). Outline of the petrology of the Kenya Rift alkaline province. Fitton, J.G., Upton, B.G.J. Alkaline Igneous Rocks Geological Society Special Publication vol. 30, Geological Society, London. 293311.Google Scholar
Barham, L.S., (2000). The Middle Stone Age of Zambia, South-Central Africa. Western Academic and Specialist Press, Bristol, England.Google Scholar
Bishop, W.W., Chapman, G.R., Hill, A., Miller, J.A., (1971). Succession of Cainozoic vertebrate assemblages from the northern Kenya Rift Valley. Nature 233, 389394.Google Scholar
Boëda, É., (1991). Approche de la variabilité des systèmes de production lithique des industries du paléolithique inférieur et moyen: chronique d’une variabilité attendue. Techniques et Cultures 17–18, 3779.Google Scholar
Boëda, É., (1994). Le concept Levallois: variabilité des méthodes. Centre National de la Recherche Scientifique Éditions, Paris.Google Scholar
Boëda, É., Geneste, J.-M., Meignen, L., (1990). Identification de chaînes opératoires lithiques du Paléolithique ancien et moyen. Paléo 2, 4380.CrossRefGoogle Scholar
Brown, F.H., (1994). Development of Pliocene and Pleistocene chronology of the Turkana Basin, East Africa, and its relation to other sites. Corrucini, R.S., Ciochon, R.L. Integrative Pathways to the Past Prentice-Hall, Englewood Cliffs, NJ. 285312.Google Scholar
Brown, F.H., Sarna-Wojcicki, A.M., Meyer, C.E., Haileab, B., (1992). Correlation of Pliocene and Pleistocene tephra layers between the Turkana Basin of East Africa and the Gulf of Aden. Quaternary International 13/14, 5567.Google Scholar
Cerling, T.E., Brown, F.H., Bowman, J.R., (1985). Low-temperature alteration of volcanic glass: hydration, Na, K, 18O and Ar mobility. Chemical Geology 52, 281293.Google Scholar
Chapman, G.R., Lippard, S.J., Martyn, J.E., (1978). The stratigraphy and structure of the Kamasia Range, Kenya Rift Valley. Journal of the Geological Society of London 135, 265281.Google Scholar
Clark, J.D., (1988). The Middle Stone Age of East Africa and the beginnings of regional identity. Journal of World Prehistory 2, 235305.Google Scholar
Clark, J.D., (1999). Cultural continuity and change in hominid behaviour in Africa during the Middle to Upper Pleistocene transition. Ullrich, H. Hominid Evolution: Lifestyles and Survival Strategies. Edition Archaea Gelsenkirchen/Schwelm, Germany. 277292.Google Scholar
Clark, J.D., Beyene, Y., WoldeGabriel, G., Hart, W.K., Renne, P., Gilbert, H., Defleur, A., Suwa, G., Katoh, S., Ludwig, K.R., Boisserie, J.-R., Asfaw, B., White, T.D., (2003). Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 747752.Google Scholar
Cornelissen, E., (1992). Site GnJh-17 and its Implications for the Archaeology of the Middle Kapthurin Formation, Baringo, Kenya. Musée Royale de l'Afrique Centrale, Annales. Sciences Humaines vol. 133, Musée Royale de l' Afrique Centrale, Tervuren.Google Scholar
Cornelissen, E., (1995). Indications du post-Acheuléen (Sangoen) dans la formation Kapthurin, Baringo, Kenya. L'Anthropologie 99, 5573.Google Scholar
Cornelissen, E., Boven, A., Dabi, A., Hus, J., Ju Yong, K., Keppens, E., Langhor, R., Moeyersons, J., Pasteels, P., Pieters, M., Uytterschaut, H., van Noten, F., Workineh, H., (1990). The Kapthurin Formation revisited. African Archaeological Review 8, 2375.Google Scholar
Dagley, P., Mussett, A.E., Palmer, H.C., (1978). Preliminary observations on the palaeomagnetic stratigraphy of the area west of Lake Baringo, Kenya. Bishop, W.W. Geological Background to Fossil Man Scottish Academic Press, Edinburgh. 225236.Google Scholar
Deino, A., McBrearty, S., (2002). 40Ar/39Ar chronology for the Kapthurin Formation, Baringo, Kenya. Journal of Human Evolution 42, 185210.Google Scholar
Dunkley, P.N., Smith, M., Allen, D.J., Darling, W.G., (1993). The Geothermal Activity and Geology of the Northern Sector of the Kenya Rift Valley.British Geological Survey International Series Research Report SC/93/1, Keyworth, Nottingham.Google Scholar
Feibel, C.S., (1999). Tephrostratigraphy and geological context in paleoanthropology. Evolutionary Anthropology 8, 87100.Google Scholar
Fisher, R.V., Schmincke, H.-U., (1984). Pyroclastic Rocks. Springer-Verlag, New York.CrossRefGoogle Scholar
Foley, R., Lahr, M.M., (1997). Mode 3 technologies and the evolution of modern humans. Cambridge Archaeological Journal 7, 336.Google Scholar
Froggatt, P.C., (1992). Standardization of the chemical analysis of tephra deposits. Report of the ICCT Working Group. Quaternary International 13/14, 9396.Google Scholar
Gibbard, P.L., (2003). Definition of the Middle-Upper Pleistocene boundary. Global and Planetary Change 36, 201208.Google Scholar
Grayson, D.K., Cole, S.C., (1998). Stone tool assemblage richness during the Middle and Early Upper Paleolithic in France. Journal of Archaeological Science 25, 927938.Google Scholar
Henshilwood, C.S., Marean, C.W., (2003). The origin of modern human behavior: critique of the models and their test implications. Current Anthropology 44, 627651.Google Scholar
Hill, A., Curtis, G., Drake, R., (1986). Sedimentary stratigraphy of the Tugen Hills, Baringo District, Kenya. Frostick, L.E., Renaut, R.W., Reid, I., Tiercelin, J.-J. Sedimentation in the African Rifts Geological Society of London Special Publication vol. 25, Blackwell, Oxford. 285295.Google Scholar
Howell, F.C., (1999). Paleo-demes, species clades, and extinctions in the Pleistocene hominin record. Journal of Anthropological Research 55, 191243.Google Scholar
Inizan, M.-L., Reduron-Ballinger, M., Roche, H., Tixier, J., (1999). Technology and Terminology of Knapped Stone. CREP, Nanterre.Google Scholar
Isaac, G.L., (1975). Sorting out the muddle in the middle: an anthropologist's post-conference appraisal. Butzer, K.W., Isaac, G.L. After the Australopithecines: Stratigraphy, Ecology, and Culture Change in the Middle Pleistocene Mouton Publishers, The Hague. 875887.Google Scholar
Klein, R.G., (1999). The Human Career: Human Biological and Cultural Origins. Chicago Univ. Press, Chicago.Google Scholar
Klein, R.G., (2000). Archaeology and the evolution of human behavior. Evolutionary Anthropology 9, 1736.Google Scholar
Lahr, M.M., Foley, R., (1998). Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Yearbook of Physical Anthropology 41, 137176.Google Scholar
Le Gall, B., Tiercelin, J.-J., Richert, J.-P., Gente, P., Sturchio, N.C., Stead, D., Le Turdu, C., (2000). A morphotectonic study of an extensional fault zone in a magma-rich rift: the Baringo Trachyte Fault System, central Kenya Rift. Tectonophysics 320, 87106.Google Scholar
Leakey, M., Tobias, P.V., Martyn, J.E., Leakey, R.E.F., (1969). An Acheulian industry with prepared core technique and the discovery of a contemporary hominid mandible at Lake Baringo, Kenya. Proceedings of the Prehistoric Society 3, 4876.Google Scholar
Lieberman, D., Shea, J.J., (1994). Behavioral differences between archaic and modern humans in the Levantine Mousterian. American Anthropologist 96, 300332.Google Scholar
Macdonald, R., (1987). Quaternary peralkaline silicic rocks and caldera volcanoes of Kenya. Fitton, J.G., Upton, B.G.J. Alkaline Igneous Rocks Geological Society Special Publication vol. 30, Geological Society, London. 313333.Google Scholar
Martyn, J., (1969). The Geologic History of the Country Between Lake Baringo and the Kerio River, Baringo District Kenya. Unpublished Ph.D. dissertation, University of London.Google Scholar
McBirney, A.R., (1984). Igneous Petrology. Freeman, Cooper and Co., San Francisco.Google Scholar
McBrearty, S., (1999). Archaeology of the Kapthurin Formation. Andrews, P., Banham, P. Late Cenozoic Environments and Hominid Evolution: A Tribute to Bill Bishop Geological Society, London. 143156.Google Scholar
McBrearty, S., (2001). The Middle Pleistocene of East Africa. Barham, L.H., Robson-Brown, K. Human Roots: Africa and Asia in the Middle Pleistocene Western Academic and Specialist Press, Limited, Bristol, UK. 8197.Google Scholar
McBrearty, S., Brooks, A., (2000). The revolution that wasn't: a new interpretation of the origin of modern human behavior. Journal of Human Evolution 39, 453563.Google Scholar
McBrearty, S., Tryon, C.A., (2006). From Acheulian to Middle Stone Age in the Kapthurin Formation of Kenya. Hovers, E., Kuhn, S.L. Transitions Before the Transition: Temporal Trends in the Middle Paleolithic and Middle Stone Age Springer, New York. 257277.Google Scholar
McBrearty, S., Bishop, L.C., Kingston, J.D., (1996). Variability in traces of Middle Pleistocene hominid behavior in the Kapthurin Formation, Baringo, Kenya. Journal of Human Evolution 30, 563580.Google Scholar
McDougall, I., Brown, F.H., Fleagle, J.G., (2005). Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733736.Google Scholar
Nelson, C.M., (1993). A standardized site enumeration system for the continent of Africa. Nyame Akuma 40, 6267.Google Scholar
Orton, G.J., (1996). Volcanic environments. Reading, H.G. Sedimentary Environments: Processes, Facies and Stratigraphythird ed.Blackwell Science, London. 485567.Google Scholar
Philpotts, A.R., (1990). Principles of Igneous and Metamorphic Petrology. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Pleurdeau, D., (2003). Le Middle Stone Age de la grotte du Porc-Épic (Dire Dawa, Éthiopie): gestion des matières premières et comportements techniques. L'Anthropologie 107, 1548.Google Scholar
Potts, R., Behrensmeyer, A.K., Ditchfield, P., (1999). Paleolandscape variation and Early Pleistocene hominid activities: members 1 and 7, Olorgesailie Formation, Kenya. Journal of Human Evolution 37, 747788.Google Scholar
Reed, S.J.B., (1996). Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge Univ. Press, Cambridge.Google Scholar
Renaut, R.W., Owen, R.B., (1980). Late Quaternary fluvio-lacustrine sedimentation and lake levels in the Baringo Basin, northern Kenya Rift Valley. Recherches Gologiques en Afrique 5, 130133.Google Scholar
Sarna-Wojcicki, A.M., Davis, J.O., (1991). Quaternary tephrochronology. Morrison, R.B. The Geology of North America: Quaternary Nonglacial Geology; Coterminous United States Geological Society of America, Boulder, CO. 93116.Google Scholar
Sarna-Wojcicki, A.M., Pringle, M.S., Wijbrans, J., (2000). New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama–Brunhes boundary. Journal of Geophysical Research 105, B9 2143121443.Google Scholar
Schmid, R., (1981). Descriptive nomenclature of classification of pyroclastic deposits and fragments: recommendations of the IUGS subcommission on the systematics of igneous rocks. Geology 9, 4143.Google Scholar
Singer, B.S., Relle, M.K., Hoffman, K.A., Battle, A., Laj, C., Guillou, H., Carracedo, J.C., (2002). Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale. Journal of Geophysical Research 107, B11 2307.Google Scholar
Smith, G.A., (1991). Facies sequences and geometries in continental volcaniclastic sequences. Fisher, R.V., Smith, G.A. Sedimentation in Volcanic Settings Society for Sedimentary Geology Special Publication vol. 45, Society of Sedimentary Geology, Tulsa. 109122.Google Scholar
Stringer, C., (2002). Modern human origins: progress and prospects. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 357, 563579.Google Scholar
Tallon, P.W.J., (1976). The Stratigraphy, Palaeoenvironments and Geomorphology of the Pleistocene Kapthurin Formation, Kenya. Unpublished Ph.D. dissertation, Queen Mary College.Google Scholar
Tallon, P.W.J., (1978). Geological setting of the hominid fossils and Acheulian artifacts from the Kapthurin Formation, Baringo District, Kenya. Bishop, W.W. Geological Background to Fossil Man Scottish Academic Press, Edinburgh. 361373.Google Scholar
Tiercelin, J.-J., Vincens, A., Barton, C., Carbonel, P., Casanova, J., Delibrias, G., Gasse, F., Grosdidier, E., Herbin, J.-P., Huc, A.Y., Jardiné, S., Le Fournier, J., Méliéres, F., Owen, R.B., Page, P., Palacios, C., Paquet, H., Péniguel, G., Peypouquet, J., Raynaud, J., Renaut, R.W., De Renéville, P., Richert, J.-P., Riff, R., Robert, P., Seyve, C., Vandenbroucke, M., Vidal, G., (1987). Le demi-graben de Baringo-Bogoria, Rift Gregory, Kenya. 30,000 ans d'histoire hydrologique et sédimentaire. Bulletin de Centres Recherche Exploration-Production (Elf Aquitaine) vol. 11, 249540.Google Scholar
Tishkoff, S.A., Williams, S.M., (2002). Genetic analysis of African populations: human evolution and complex disease. Nature Reviews. Genetics 3, 611621.Google Scholar
Tryon, C.A., (2002). Middle Pleistocene sites from the “southern” Kapthurin Formation of Kenya. Nyame Akuma 57, 613.Google Scholar
Tryon, C.A., (2003). The Acheulian to Middle Stone Age Transition: Tephrostratigraphic Context for Archaeological Change in the Kapthurin Formation, Kenya. Unpublished Ph.D., University of Connecticut.Google Scholar
Tryon, C.A., in press(a). ‘Early’ Middle Stone Age lithic technology of the Kapthurin Formation (Kenya). Current Anthropology.Google Scholar
Tryon, C.A., in press(b). Le concept Levallois en Afrique. Annales Fyssen.Google Scholar
Tryon, C.A., McBrearty, S., (2002). Tephrostratigraphy and the Acheulian to Middle Stone Age transition in the Kapthurin Formation, Baringo, Kenya. Journal of Human Evolution 42, 211235.Google Scholar
Tryon, C.A., McBrearty, S., Texier, P.-J., in press. Levallois lithic technology from the Kapthurin Formation, Kenya: Acheulian origin and Middle Stone Age diversity.. African Archaeological Review.Google Scholar
Van Peer, P., (1998). The Nile Corridor and the Out-of-Africa model: an examination of the archaeological record. Current Anthropology 39, S115S140.Google Scholar
Van Peer, P., Fullagar, R., Stokes, S., Bailey, R.M., Moeyersons, J., Steenhudt, F., Geerts, A., Vanderbeken, T., De Dapper, M., Geus, F., (2003). The Early to Middle Stone Age transition and the emergence of modern human behavior at site 8-B-11, Sai Island, Sudan. Journal of Human Evolution 45, 187194.Google Scholar
White, T.D., Asfaw, B., DeGusta, D., Gilbert, H., Richards, G.D., Suwa, G., Howell, F.C., (2003). Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 742747.Google Scholar
Wurz, S., (2002). Variability in the Middle Stone Age lithic sequence, 115,000–60,000 years ago at Klasies River, South Africa. Journal of Archaeological Science 29, 10011015.CrossRefGoogle Scholar
Yamei, H., Potts, R., Baoyin, Y., Zhengtang, G., Deino, A., Wei, W., Clark, J., Guangmao, X., Weiwen, H., (2000). Mid-Pleistocene Acheulean-like stone technology of the Bose basin, South China. Science 287, 16221626.Google Scholar