Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T15:23:58.208Z Has data issue: false hasContentIssue false

Speleothem Evidence for Changes in Indian Summer Monsoon Precipitation over the Last ∼2300 Years

Published online by Cambridge University Press:  20 January 2017

Rhawn F. Denniston
Affiliation:
Department of Geology, University of Iowa, Iowa City, Iowa 52242, E-mail: [email protected]
Luis A. González
Affiliation:
Department of Geology, University of Iowa, Iowa City, Iowa 52242, E-mail: [email protected]
Yemane Asmerom
Affiliation:
Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131
Ram H. Sharma
Affiliation:
Himalayan Climate Centre, Kathmandu, Nepal
Mark K. Reagan
Affiliation:
Department of Geology, University of Iowa, Iowa City, Iowa 52242, E-mail: [email protected]

Abstract

Speleothems from a well-ventilated dolomitic cave in the Pokhara Valley, central Nepal, preserve a mineralogic record of Indian summer monsoon variability over the past 2300 yr. Annually deposited aragonite layers formed between 2300 and 1500 yr B.P., indicating reduced monsoon precipitation and increased cave aridity, whereas alternating calcite/aragonite laminae deposited after 1500 yr B.P. record elevated summer monsoon precipitation and increased cave humidity. Dense, optically clear calcite layers deposited from 450 ± 5 to 360 ± 20 yr B.P. (1550 to 1640 A.D.) indicate a less-evaporative cave environment and suggest moister and/or cooler conditions, possibly related to climatic change associated with the onset of the Little Ice Age.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, A., Smart, P.L., Edwards, R.L., Richards, D.A., (1993). Annual growth banding in a cave stalagmite.. Nature 364, 518520.Google Scholar
Baeumler, G., Gebauer, H.D., (1992). Siddha-Gupha, the deepest cave in Nepal.. Mitteilungen—Verband Deutscher Hoehlen und Karstforscher 38, 38.Google Scholar
Baker, A., Ito, E., Smart, P.L., McEwan, R.F., (1997). Elevated and variable values of 13C in speleothems in a British cave system.. Chemical Geology 136, 263270.Google Scholar
Bar-Matthews, M., Matthews, A., Ayalon, A., (1991). Environmental controls on speleothem mineralogy in a karstic dolomitic terrain (Soreq Cave, Israel).. Journal of Geology 99, 189207.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., Halicz, L., (1996). Carbon and oxygen isotope study of the active water–carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semiarid regions.. Geochimica et Cosmochimica Acta 60, 337347.CrossRefGoogle Scholar
Berner, R.A., (1975). The role of magnesium in the crystal growth of calcite and aragonite from seawater.. Geochimica et Cosmochimica Acta 39, 489504.Google Scholar
Bischoff, J.L., (1968). Kinetics of calcite nucleation: Magnesium ion inhibition and ionic strength catalysis.. Journal of Geophysical Research 73, 33153322.Google Scholar
Broecker, W.S., Olson, E.A., (1960). Radiocarbon measurements and annual banding in cave formations.. Nature 185, 9394.CrossRefGoogle Scholar
Bryson, R.A., Swain, A.M., (1981). Holocene variations of monsoon rainfall in Rajasthan.. Quaternary Research 16, 125145.Google Scholar
Chafetz, H.S., Rush, P.F., Utech, N.M., (1991). Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: An example from an active travertine system.. Sedimentology 38, 107126.CrossRefGoogle Scholar
Chen, J., Edwards, L., Wasserburg, W., (1986). 238U, 234U, and 232Th in seawater.. Earth and Planetary Science Letters 80, 241251.CrossRefGoogle Scholar
Chernov, A.A., (1984). Modern Crystallography III. Crystal Growth.. Springer-Verlag, Berlin.Google Scholar
Clemens, S., Prell, W., Murray, D., Shimmield, G., Weedon, G., (1991). Forcing mechanisms of the Indian Ocean monsoon.. Nature 353, 720725.CrossRefGoogle Scholar
Deleuze, M., Brantley, S.L., (1997). Inhibition of calcite crystal growth by Mg2+ at 100°C and 100 bars: Influence of growth regime.. Geochimica et Cosmochimica Acta 61, 14751485.CrossRefGoogle Scholar
Duplessey, J.C., (1982). Glacial to interglacial contrasts in the northern Indian Ocean.. Nature 295, 494498.CrossRefGoogle Scholar
Enzel, Y., Ely, L.L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S.N., Baker, V.R., Sandler, A., (1999). High-resolution Holocene environmental changes in the Thar Desert, northwestern India.. Science 284, 125128.CrossRefGoogle ScholarPubMed
Even, H., Carmi, I., Magaritz, M., Gerson, R., (1986). Timing the transport of water through the upper vadose zone in a karstic system above a cave in Israel.. Earth Surfaces Processes and Landforms 11, 181191.CrossRefGoogle Scholar
Fernández-Dı́az, L., Putnis, A., Prieto, M., Putnis, C.V., (1996). The role of magnesium in the crystallization of calcite and aragonite in a porous medium.. Journal of Sedimentary Research 66, 482491.Google Scholar
Fischbeck, R., Müller, G., (1971). Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite, and calcite in speleothems of the Fränkische Schwiz, western Germany.. Contributions to Mineralogy and Petrology 33, 8792.Google Scholar
Folk, R.L., (1994). Interaction between bacteria, nannobacteria, and mineral precipitation in hot springs of central Italy.. Géographie Physique et Quaternaire 48, 233246.CrossRefGoogle Scholar
Fontes, J.-C., Gasse, F., Gibert, E., (1996). Holocene environmental changes in Bangong Co basin (Western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core.. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 2547.Google Scholar
Friedman, G.M., (1959). Identification of carbonate minerals by staining methods.. Journal of Sedimentary Petrology 29, 8797.Google Scholar
Fu-Bao, W., Fan, C.Y., (1987). Climatic changes in the Qinghai-Xizang (Tibetan) region of China during the Holocene.. Quaternary Research 28, 5060.Google Scholar
Gasse, F., Derbyshire, E., (1996). Environmental changes in the Tibetan Plateau and surrounding areas—Preface.. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 13.Google Scholar
Genty, D., Quinif, Y., (1996). Annually laminated sequences in the internal structure of some Belgian stalagmites—Importance for paleoclimatology.. Journal of Sedimentary Research 66, 275288.Google Scholar
Given, R.K., Wilkinson, B.H., (1985). Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates.. Journal of Sedimentary Petrology 55, 109119.Google Scholar
González, L.A., Lohmann, K.C., (1988). Controls on mineralogy and composition of spelean carbonates: Carlsbad Caverns, New Mexico.. James, N.P., Choquette, P.W., Paleokurt 81101.Google Scholar
Gregory, S., (1989). Macro-regional definition and characteristics of Indian summer monsoon rainfall, 1871–1985.. International Journal of Climatology 9, 465483.Google Scholar
Hui, F., Gasse, F., Huc, A., Yuanfang, L., Sifeddine, A., Soulie-Marsche, I., (1996). Holocene environmental changes in Bangong Co basin (Western Tibet). Part 3: Biogenic remains.. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 6578.Google Scholar
Liu, K.-B., Yao, Z., Thompson, L.G., (1998). A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau.. Geology 26, 135138.2.3.CO;2>CrossRefGoogle Scholar
Mazari, R.K., Bagati, T.N., Chauhan, M.S., Rajagopalan, G., (1996). Palaeoclimatic record of last 2000 years in trans-Himalayan Lahaul-Spiti region.. Paleoclimate and Environmental Variability in Austral-Asian Transect during the Past 2000 Years, Proceedings, IGBP-PAGES/PEP II Symposium, Nagoya, Japan.p. 262269.Google Scholar
Möller, P., Kubanek, F., (1976). Role of magnesium in nucleation processes in calcite, aragonite and dolomite—A review.. Neues Jahrbuch fuer Mineralogie Abhandlungen 126, 199220.Google Scholar
Morse, J.W., Wang, Q., Tsio, M.Y., (1997). Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater.. Geology 25, 8587.2.3.CO;2>CrossRefGoogle Scholar
Morse, J.W., Mackenzie, F.T., (1990). Geochemistry of Sedimentary Carbonates.. Elsevier, Amsterdam.Google Scholar
Murray, J.W., (1954). The deposition of calcite and aragonite in caves.. Journal of Geology 62, 481492.CrossRefGoogle Scholar
Overpeck, J., Anderson, D., Trumbore, S., Prell, W., (1996). The southwest Indian Monsoon over the last 18,000 years.. Climate Dynamics 12, 213225.Google Scholar
Railsback, L.B., Brook, G.A., Chen, J., Kalin, R., Fleisher, C.J., (1994). Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite.. Journal of Sedimentary Research A64, 147155.Google Scholar
Sharma, C., Singh, G., (1974). Studies in the late-Quaternary vegetational history of Himachal Pradesh: 1, Khajiar Lake.. The Palaeobotanist 21, 144162.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB 3.0 14C age calibration program.. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Sukumar, R., Ramesh, R., Pant, R.K., Rajagopalan, G., (1993). A δ13C record of late Quaternary climate change from tropical peats in southern India.. Nature 364, 703706.Google Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., Bolzan, J.F., (1997). Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core.. Science 276, 18211825.CrossRefGoogle Scholar
Thrailkill, J., (1971). Carbonate deposition in Carlsbad Caverns.. Journal of Geology 79, 683695.Google Scholar
Thrailkill, J., (1976). Studies and Excavation of Limestone Caves and the Deposition of Speleothems.. Princeton University, p. 193.Google Scholar
Turin, H.J., Plummer, M.A., (1995). Geochemistry of Lechuguilla Cave pool water.. Geological Society of America Abstracts with Programs 27, A-95.Google Scholar
Van Campo, E., Cour, P., Sixuan, H., (1996). Holocene environmental changes in Bangong Co. Basin (western Tibet): Part 2, The pollen record.. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 4963.Google Scholar
Van Campo, E., Duplessey, J.C., Rissignol-Strick, M., (1982). Climatic conditions deducted from a 150-kyr oxygen isotope–pollen record from the Arabian Sea.. Nature 296, 5659.Google Scholar
Van Campo, E., Gasses, F., (1993). Pollen- and diatom-inferred climatic and hydrologic changes in Sumxi Co. Basin (western Tibet) since 13,000 yr B.P.. Quaternary Research 39, 300313.CrossRefGoogle Scholar
Williams, M.A.J., Clark, M.F., (1984). Late Quaternary environments in north-central India.. Nature 308, 633635.CrossRefGoogle Scholar
Yao, T., Thompson, L.G., (1992). Trends and features of climatic changes in past 5000 years recorded by the Dunde ice core.. Annals of Glaciology 16, 2124.Google Scholar