Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T17:30:22.875Z Has data issue: false hasContentIssue false

Spatiotemporal evolution of paludification associated with autogenic and allogenic factors in the black spruce–moss boreal forest of Québec, Canada

Published online by Cambridge University Press:  07 January 2019

Éloïse Le Stum-Boivin*
Affiliation:
Department of Geography, Université du Québec à Montréal, Pavillon Hubert Aquin, 1255 St-Denis, Montréal, Québec H2X 3R9, Canada GEOTOP Research Center, Université du Québec à Montréal, 201 Avenue Président-Kennedy, Montréal, Québec H2X 3Y7, Canada
Gabriel Magnan
Affiliation:
GEOTOP Research Center, Université du Québec à Montréal, 201 Avenue Président-Kennedy, Montréal, Québec H2X 3Y7, Canada
Michelle Garneau
Affiliation:
Department of Geography, Université du Québec à Montréal, Pavillon Hubert Aquin, 1255 St-Denis, Montréal, Québec H2X 3R9, Canada GEOTOP Research Center, Université du Québec à Montréal, 201 Avenue Président-Kennedy, Montréal, Québec H2X 3Y7, Canada
Nicole J. Fenton
Affiliation:
Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Campus de Rouyn-Noranda, 445 boul. de l’Université Rouyn-Noranda, Québec J9X 5E4, Canada
Pierre Grondin
Affiliation:
Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière, 2700 rue Einstein, Québec G1P 3W8, Canada
Yves Bergeron
Affiliation:
Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Campus de Rouyn-Noranda, 445 boul. de l’Université Rouyn-Noranda, Québec J9X 5E4, Canada Department of Biological Science, Université du Québec à Montréal, Pavillon des Sciences Biologiques, 141 av. du Président-Kennedy, Québec H2X 3Y7, Canada
*
*Corresponding author at: Department of Geography, Université du Québec à Montréal, 405 St-Catherine East, Montréal, Québec H2L 2C4, Canada. E-mail address: [email protected] (E. Le Stum-Boivin).

Abstract

Paludification is the most common process of peatland formation in boreal regions. In this study, we investigated the autogenic (e.g., topography) and allogenic (fire and climate) factors triggering paludification in different geomorphological contexts (glaciolacustrine silty-clayey and fluvioglacial deposits) within the Québec black spruce (Picea mariana)–moss boreal forest. Paleoecological analyses were conducted along three toposequences varying from a forest on mineral soil to forested and semi-open peatlands. Plant macrofossil and charcoal analyses were performed on basal peat sections (≤50 cm) and thick forest humus (<40 cm) to reconstruct local vegetation dynamics and fire history involved in the paludification process. Results show that primary paludification started in small topographic depressions after land emergence ca. 8000 cal yr BP within rich fens. Lateral peatland expansion and secondary paludification into adjacent forests occurred between ca. 5100 and 2300 cal yr BP and resulted from low-severity fires during a climatic deterioration. Fires that reduced or eliminated entirely the organic layer promoted the establishment of Sphagnum in microdepressions. Paludification resulted in the decline of some coniferous species such as Abies balsamea and Pinus banksiana. The paleoecological approach along toposequences allowed us to understand the spatiotemporal dynamics of paludification and its impacts on the vegetation dynamics over the Holocene.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, A.A., Asselin, H., Larouche, A.C., Bergeron, Y., Carcaillet, C., Richard, P.J.H., 2008. Changes in fire regime explain the Holocene rise and fall of Abies balsamea in the coniferous forests of western Québec, Canada. Holocene 18, 693703.Google Scholar
Ali, A.A., Blarquez, O., Girardin, M.P., Hély, C., Tinquaut, F., El Guellab, A., Valsecchi, V., et al., 2012. Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proceedings of the National Academy of Sciences of the United States of America 109, 2096620970.Google Scholar
Anderson, R.L., Foster, D.R., Motzkin, G., 2003. Integrating lateral expansion into models of peatland development in temperate New England. Journal of Ecology 91, 6876.Google Scholar
Asselin, M., Grondin, P., Lavoie, M., Fréchette, B., 2016. Fires of the last millennium led to landscapes dominated by early successional species in Quebec’s Clay Belt boreal forest, Canada. Forests 7, 205.Google Scholar
Bauer, I.E., Gignac, L.D., Vitt, D.H., 2003. Development of a lateral complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation. Canadian Journal of Botany 81, 833847.Google Scholar
Bauer, I.E., Vitt, D.H., 2011. Peatland dynamics in a complex landscape: development of a fen-bog complex in the sporadic discontinuous permafrost zone of northern Alberta, Canada. Boreas 40, 714726.Google Scholar
Benscoter, B.W., Vitt, D.H., 2008. Spatial patterns and temporal trajectories of the bog ground layer along a post-fire chronosequence. Ecosystems 11, 10541064.Google Scholar
Bergeron, Y., Gauthier, S., Flannigan, M., Kafka, V., 2004. Fire regimes at the transition between mixedwood and coniferous boreal; forest in northwestern Quebec. Ecology 85, 19161932.Google Scholar
Bisbee, K.E., Gower, S.T., Norman, J.M., Nordheim, E.V., 2001. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologica 129, 261270.Google Scholar
Black, R.A., Bliss, L.C., 1978. Recovery sequence of Picea mariana–Vaccinium uliginosum forests after fire near Inuvik, Northwest Territories, Canada. Canadian Journal of Botany 56, 20202030.Google Scholar
Blarquez, O., Ali, A.A., Girardin, M.P., Grondin, P., Fréchette, B., Bergeron, Y., Hély, C., 2015. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers. Scientific Reports 5, 13356.Google Scholar
Bouchard, M., Pothier, D., Gauthier, S., 2008. Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Canadian Journal of Forest Research 38, 16211633.Google Scholar
Brouillet, L., Coursol, F., Meades, S.J., Favreau, M., Anions, M., Bélisle, P., Desmet, P., 2018. VASCAN, the Database of Vascular Plants of Canada (accessed July 21, 2018). http://data.canadensys.net/vascan/search?lang=fr.Google Scholar
Chambers, F.M., 1997. Bogs as treeless wastes: the myth and the implications for conservation. In: Parkyn, L., Stoneman, R.E., Ingram, H.A.P. (Eds.), Conserving Peatlands. CAB International, Wallingford, Oxfordshire, UK, pp. 168175.Google Scholar
Charman, D., 2002. Peatlands and Environmental Change. Wiley, West Sussex, UK.Google Scholar
Clymo, R.S., Duckett, J.G., 1986. Regeneration of Sphagnum. New Phytologist 102, 589614.Google Scholar
Clymo, R.S., Hayward, P.M., 1982. The ecology of Sphagnum. In: Smith, A. (Ed.), Bryophyte Ecology. Springer, Dordrecht, the Netherlands, pp. 229289.Google Scholar
Cyr, D., Bergeron, Y., Gauthier, S., Larouche, C., 2005. Are the old-growth forests of Clay Belt part of a fire-regulated mosaic? Canadian Journal of Forest Research 35, 6573.Google Scholar
Cyr, D., Gauthier, S., Bergeron, Y., 2007. Scale-dependent determinants of heterogeneity in fire frequency in a coniferous boreal forest of eastern Canada. Landscape Ecology 22, 13251339.Google Scholar
Dean, W.E. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentology Petrology 44, 242248.Google Scholar
Environment Canada, 2016. Canadian Climate Normals, 1961-1990 (accessed September 15th, 2016). http://climate.weather.gc.ca/climate_normals/.Google Scholar
Faubert, J., 2013. Flore des bryophytes du Québec-Labrador. Vol. 2, Mousses, première partie. Société Québécoise de bryologie, Saint-Valérien, QC, Canada.Google Scholar
Fenton, N.J., Béland, C., De Blois, S., Bergeron, Y., 2007. Sphagnum establishment and expansion in black spruce (Picea mariana) boreal forests. Canadian Journal of Botany 85, 4350.Google Scholar
Fenton, N.J., Bergeron, Y., 2006. Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. Journal of Vegetation Science 17, 6576.Google Scholar
Fenton, N.J., Bergeron, Y., 2011. Dynamic old-growth forests? A case study of boreal black spruce forest bryophytes. Silva Fennica 45, 983994.Google Scholar
Fenton, N.J., Bergeron, Y., Paré, D., 2010. Decomposition rates of bryophytes in managed boreal forests: influence of bryophytes species and forest harvesting. Plant Soil 336, 499508.Google Scholar
Fenton, N.J., Lecomte, N., Légaré, S., Bergeron, Y., 2005. Paludification in black spruce (Picea mariana) forest of eastern Canada: potential factors and management implications. Forest Ecology and Management 213, 151159.Google Scholar
Filion, L., 1987. Holocene development of parabolic dunes in the central St-Lawrence Lowland, Québec. Quaternary Research 28, 196209.Google Scholar
Foster, D.R., 1984. The dynamics of Sphagnum in forest and peatland communities in southeastern Labrador, Canada. Arctic 37, 133140.Google Scholar
Foster, D.R., Fritz, S.C., 1987. Mire development, pool formation and landscape processes on patterned fens in Dalarna, central Sweden. Journal of Ecology 75, 409437.Google Scholar
Fréchette, B., Richard, P.J.H., Grondin, P., Lavoie, M., Larouche, A.C., (in press). Histoire postglaciaire de la végétation et du climat des pessières et des sapinières de l’ouest du Québec. Mémoire de recherche forestière n°179. Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière, Québec City, QC, Canada.Google Scholar
Garneau, M., 1995. Collection de référence de graines et autres macrofossiles végétaux de taxons provenant du Québec méridional et boréal et de l’arctique canadien. Geological Survey of Canada, Division de la science des terrains, Sainte-Foy, QC, Canada.Google Scholar
Gauthier, S., De Grandpré, L., Bergeron, Y., 2000. Differences in forest composition in two boreal forest ecoregions of Quebec. Journal of Vegetation Science 11, 781790.Google Scholar
Glebov, F.Z., Korzukhin, M.D., 1992. Transitions between boreal forest and wetland. In: Shugart, H., Leemans, R., Bonan, G. (Eds.), A Systems Analysis of the Global Boreal Forest. Cambridge University Press, Cambridge.Google Scholar
Grondin, P., Noël, J., Hotte, D., 2007. Atlas des unités homogènes du Québec méridional selon la végétation et ses variables explicatives. Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière, Québec City, QC, Canada.Google Scholar
Halsey, L.A., Vitt, D.H., Gignac, L.D., 1998. Sphagnum-dominated peatlands in North America since the last glacial maximum: their occurrence and extent. American Bryological and Lichenological Society 103, 334352.Google Scholar
Heilman, P.E., 1966. Change in distribution and availability of nitrogen with forest succession on North Slope in interior Alaska. Ecology 47, 825831.Google Scholar
Heinselman, M.L., 1963. Forest sites, bog processes, and peatland types in the Glacial Lake Agassiz region, Minnesota. Ecological Monographs 33, 327375.Google Scholar
Heinselman, M.L., 1970. Landscape evolution, peatland types, and environment in the lake Agassiz Peatlands Natural Area, Minnesota. Ecological Monographs 40, 235261.Google Scholar
Jasieniuk, M.A., Johnson, E.A., 1980. Peatland vegetation organization and dynamics in the western subarctic, Northwest Territories, Canada. Canadian Journal of Botany 60, 25812593.Google Scholar
Jeglum, J.K., Rothwell, R.L., Berry, G.J., Smith, G.K.M., 1992. A Peat Sampler for Rapid Survey. Frontline Technical Note. Canadian Forest Service, Sault Ste. Marie, ON, Canada.Google Scholar
Jones, M.C., Yu, Z., 2010. Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proceedings of the National Academy of Sciences of the United States of America 16, 73477352.Google Scholar
Jowsey, P.C., 1966. An improved peat sampler. New Phytologist 65, 245248.Google Scholar
Juggins, S., 2014. C2 Version 1.7.7. University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
Jules, A.N., Asselin, H., Bergeron, Y., Ali, A.A., 2018. Are marginal balsam fir and eastern white cedar stands relics from once more extensive populations in north-eastern North America? Holocene. https://doi.org/10.1177%2F0959683618782601.Google Scholar
Klinger, L.F., Short, S.K., 1996. Succession in the Hudson Bay lowland, northern Ontario, Canada. Arctic and Alpine Research 28, 172183.Google Scholar
Korhola, A., 1995. Holocene climatic variations in southern Finland reconstructed from peat-initiation data. Holocene 5, 4358.Google Scholar
Korhola, A., 1996. Initiation of a sloping mire complex in southwestern Finland: autogenic versus allogenic controls. Ecoscience 3, 216222.Google Scholar
Korhola, A., Ruppel, M., Seppa, H., Väliranta, M., Virtanen, T., Weckström, , 2010. The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane. Quaternary Science Reviews 29, 661–617.Google Scholar
Korhola, A.A., 1994. Radiocarbon evidence for rates of lateral expansion in raised mires in southern Finland. Quaternary Research 42, 299307.Google Scholar
Laamrani, A., Valeria, O., Fenton, N., Bergeron, Y., Cheng, L.Z., 2014. The role of mineral soil topography on the spatial distribution of organic layer thickness in a paludified boreal landscape. Geoderma 221–222, 7081.Google Scholar
Laine, J., Harju, P., Timonen, T., Laine, A., Tuittila, E.-S., Minkkinen, K., Vasander, H., 2009. The Intricate Beauty of Sphagnum Mosses: A Finnish Guide to Identification. University of Helsinki, Helsinki, Finland.Google Scholar
Lang, S., Cornelissen, J.H.C., Klahn, T., van Logtestijn, R.S.P., Broekman, R., Schweikert, W., Aerts, R., 2009. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology 97, 886900.Google Scholar
Lavoie, M., Harper, K., Paré, D., Bergeron, Y., 2007. Spatial pattern in the organic layer and tree growth: a case study from regenerating Picea mariana stands prone to paludification. Journal of Vegetation Science 18, 211220.Google Scholar
Lavoie, M., Paré, D., Fenton, N., Groot, A., Taylor, K.C., 2005. Paludification and management of forested peatlands in Canada: a literature review. Environmental Reviews 13, 2150.Google Scholar
Lecomte, N., Simard, M., Bergeron, Y., Larouche, A., Asnong, H., Richard, P.J., 2005. Effects of fire severity and initial tree composition on understorey vegetation dynamics in a boreal landscape inferred from chronosequence and paleoecological data. Journal of Vegetation Science 16, 665674.Google Scholar
Lecomte, N., Simard, M., Fenton, N., Bergeron, Y., 2006. Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forests of eastern Canada. Ecosystems 9, 12151230.Google Scholar
Lévesque, P.E.M., Dinel, H., Larouche, A., 1998. Guide to the Identification of Plant Macrofossils in Canadian Peatlands. Land Resource Research Centre, Ottawa.Google Scholar
Lindsay, R.A., Charman, D.J., Everingham, F., O’Reilly, R.M., Palmer, M.A., Rowell, T.A., Stroud, D.A., 1988. Part I: peatland ecology. In: Ratcliffe D.A., Oswald P.H. (Eds.), The Flow Country: The Peatlands of Caithness and Sutherland. Joint Nature Conservation Committee, Peterborough, UK, pp. 932.Google Scholar
Liu, K.-B., 1990. Holocene paleoecology of boreal forest and Great Lakes-St. Lawrence forest in Northern Ontario. Ecological Monographs 60, 179212.Google Scholar
Loisel, J., Yu, Z., Parsekian, A., Nolan, J., Slater, L., 2013. Quantifying landscape morphology influence on peatland lateral expansion using ground-penetrating radar (GPR) and peat core analysis. Journal of Geophysical Research: Biogeosciences 118, 373384.Google Scholar
MacDonald, G.M., Beilman, D.W., Kremennetski, K.V., Sheng, Y., Smith, L.C., Velichko, A.A., 2006. Rapid early development of circumartic peatlands and atmospheric CH4 and CO2 variations. Science 314, 285288.Google Scholar
Magnan, G., Garneau, M., 2014. Evaluating long-term regional climate variability in the maritime region of the St. Lawrence North Shore (eastern Canada) using a multi-site comparison of peat-based paleohydrological records. Journal of Quaternary Science 29, 209220.Google Scholar
Magnan, G., Lavoie, M., Payette, S., 2012. Impact of fire on long-term vegetation dynamics of ombrotrophic peatlands in northwestern Québec, Canada. Quaternary Research 77, 110121.Google Scholar
Magnan, G., Le Stum-Boivin, E., Garneau, M., Grondin, P., Fenton, N., Bergeron, Y., 2018. Holocene vegetation dynamics and hydrological variability in forested peatlands of the Clay Belt, eastern Canada, reconstructed using a paleoecological approach. https://doi.org/10.1111/bor.12345.Google Scholar
Mäkilä, M., 1997. Holocene lateral expansion, peat growth and carbon accumulation on Haukkasuo, a raised bog in southeastern Finland. Boreas 26, 114.Google Scholar
Mauquoy, D., Hughes, P.D.M., van Geel, B., 2010. A protocol for plant macrofossil analysis of peat deposits. Mires and Peat 7, 15.Google Scholar
Messaoud, Y., Asselin, H., Bergeron, Y., Grondin, P., 2014. Competitive advantage of black spruce over balsam fir in coniferous boreal forests of eastern North America revealed by site index. Forest Science 60, 5762.Google Scholar
Morneau, C., Payette, S., 1989. Postfire lichen-spruce woodland recovery at the limit of the boreal forest in northern Quebec. Canadian Journal of Botany 67, 27702782.Google Scholar
Nguyen-Xuan, T, Bergeron, Y., Simard, D., Fyles, J.W., David, P., 2000. The importance of forest floor disturbance in the early regeneration patterns of the boreal forest of western and central Quebec: a wildfire versus logging comparison. Canadian Journal of Forest Research 30, 13531364.Google Scholar
Payette, S., 2001. Les principaux types de tourbières. In: Payette, S., Rochefort, L. (Eds.), Écologie des tourbières du Québec-Labrador. Les Presses de l’Université Laval, Québec City, QC, Canada, pp. 3990.Google Scholar
Payette, S., Delwaide, A., Couillard, P.-L., Pilon, V., 2017. Disjunct jack pine (Pinus banksiana) populations of the boreal forest in eastern Canada: expanding decline or stable? Botany 95, 697707.Google Scholar
Payette, S., Garneau, M., Delwaide, A., Schaffhauser, A., 2012. Forest soil paludification and mid-Holocene retreat of jack pine in easternmost North America: evidence for a climatic shift from fire-prone to peat-prone conditions. Holocene 23, 494503.Google Scholar
Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union 4, 439473.Google Scholar
Prescott, C.E., Maynard, D.G., Laiho, R., 2000. Humus in northern forests: friends or foe? Forest Ecology and Management 133, 2336.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Roy, M., Dell’Oste, F., Veillette, J.J., de Vernal, A., Hélie, J.-F., Parent, M., 2011. Insights on the events surrounding the final drainage of Lake Ojibway based on James Bay stratigraphic sequences. Quaternary Science Reviews 30, 682692.Google Scholar
Roy, M., Veillette, J.J., Daubois, V., Ménard, M., 2015. Late-stage phases of glacial Lake Ojibway in the central Abitibi region, eastern Canada. Geomorphology 248, 1423.Google Scholar
Ruppel, M., Väliranta, M., Virtanen, T., Korhola, A., 2013. Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. Holocene 23, 15961606.Google Scholar
Rydin, H., 1993. Interspecific competition between Sphagnum mosses on a raised bog. Oikos 66, 413423.Google Scholar
Rydin, H., Jeglum, J.K., 2006. The Biology of Peatlands. Oxford University Press, Oxford.Google Scholar
Saucier, J.-P., Robitaille, A., Grondin, P., 2009. Cadre bioclimatique du Québec. In: Doucet, R., Côté, M. (Eds.), Manuel de foresterie. 2nd ed. Ordre des ingénieurs forestiers du Québec, Éditions MultiMondes, Québec City, QC, Canada, pp. 186205.Google Scholar
Schaffhauser, A., Payette, S., Garneau, M., Robert, É.C., 2016. Soil paludification and Sphagnum bog initiation: the influence of indurated podzolic soil and fire. Boreas 46, 428441.Google Scholar
Schweingruber, F. H., 1990. Anatomy of European Woods. Paul Haupt, Bern, Switzerland.Google Scholar
Sheng, Y., Smith, C.S., MacDonald, G.M., Kremenetski, K.V., Frey, K.E., Velichko, A.A., Lee, M., Beilman, D.W., Dubinin, P., 2004. A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Global Biogeochemical Cycles 18, GB3004.Google Scholar
Siegel, D.I., 1983. Ground water and the evolution of patterned mires, Glacial Lake Agassiz peatlands, northern Minnesota. Journal of Ecology 71, 913921.Google Scholar
Simard, M., Bernier, P.Y., Bergeron, Y., Paré, D., Guérine, L., 2009. Paludification dynamics in the boreal forest of the James Bay Lowlands: effect of time since fire and topography. Revue canadienne de recherche forestière 39, 546552.Google Scholar
Simard, M., Lecomte, N., Bergeron, Y., Bernier, P.Y., Paré, D., 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecological Applications 17, 16191637.Google Scholar
Sjörs, H., 1983. Mires of Sweden. In: Gore, A.J.P. (Ed.), Ecosystems of the World: Mires—Swamp, Bog, Fen and Moor. Regional Studies 4B. Elsevier, Amsterdam, pp. 6993.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2017. CALIB 7.1 (accessed October 20, 2017). http://calib.org/calib/.Google Scholar
Talon, B., 1997. Étude anatomique et comparative de charbons de bois de Larix decidua Mill. et de Picea abies (L.) Karst. Académie des Sciences de Paris. Sciences de la vie 320, 581588.Google Scholar
Taylor, S.J., Carleton, T.J., Adams, P., 1987. Understory vegetation change in a Picea mariana chronosequence. Vegetatio 73, 6372.Google Scholar
Terrier, A., de Groot, W.J., Girardin, M.P., Bergeron, Y., 2014. Dynamics of moisture content in spruce–feather moss and spruce–Sphagnum organic layers during an extreme fire season and implications for future depths of burn in Clay Belt black spruce forests. International Journal of Wildland Fire 23, 490502.Google Scholar
Thinon, M., 1978. La pédoanthracologie: une nouvelle méthode d’analyse phytochronologique depuis le Néolithique. Compte rendus de l’Académie des Sciences de Paris 287, 12031206.Google Scholar
Thinon, M., 1992. L’analyse pédoanthracologique: aspects méthodologiques et applications. Thèse de Doctorat ès Sciences, Université Aix-Marseille III.Google Scholar
Tolonen, K., 1983. The post-glacial fire record. In: Wein, R.W., MacLean, D.A. (Eds.), The Role of Fire in Northern Circumpolar Ecosystems. Wiley and Sons, New York, pp. 2144.Google Scholar
Turetsky, M.R., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking, S., McGuire, A.D., Tuittila, E.S., 2012. The resilience and functional role of moss in boreal and artic ecosystems. New Phytologist 196, 4967.Google Scholar
Turunen, C., Turunen, J., 2003. Development history and carbon accumulation of a slope bog in oceanic British Columbia, Canada. Holocene 13, 225238.Google Scholar
Van Cleve, K., Dyrness, C.T., Viereck, L.A., Fox, J., Chapin, F.S., Oechel, W., 1983. Taiga ecosystems in interior Alaska. BioScience 33, 3944.Google Scholar
Viau, A.E., Gajewski, K., Sawada, M.C., Fines, P., 2006. Millennial-scale temperature variations in North America during the Holocene. Journal of Geophysical Research 111, 146.Google Scholar
Viereck, L.A., 1983. The effects of fire in black spruce ecosystems in Alaska and northern Canada. In: Wein, R.W., MacLean, D.A. (Eds.), The Role of Fire in Northern Circumpolar Ecosystems. Wiley and Sons, New York, pp. 201220.Google Scholar
Vincent, J.S., 1989. Le Quaternaire du sud-est du Bouclier canadien. In: Fulton, R.J. (Ed.), Le Quaternaire du Canada et du Groenland. Commission géologique du Canada, Ottawa, pp. 266295.Google Scholar
Walker, M.J.C., Berkelhammer, M., Björck, S., Cwynar, L.C., Fisher, D.A., Long, A.J., Lowe, J.J., Newnham, R.M., Rasmussen, S.O., Weiss, H., 2012. Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science 27, 649659.Google Scholar
Wieder, R.K., Scott, K., Kamminga, K., Vile, M.A., Vitt, D.H., Bone, T., Xu, B., Benscoter, B.W., Bhatti, J.S., 2009. Postfire carbon balance in boreal bogs of Alberta, Canada. Global Change Biology 15, 6381.Google Scholar
Yu, Z., Beilman, D.W., Jones, M., 2009. Sensitivity of northern peatland carbon dynamics to Holocene climate change. In: Baird, A.J., Belyea, L.R., Comas, X., Reeve, A.S., Slater, L.D. (Eds.), Carbon Cycling in North Peatlands. American Geophysical Union, Washington, DC, pp. 5569.Google Scholar
Supplementary material: File

Le Stum-Boivin et al. supplementary material

Le Stum-Boivin et al. supplementary material 1

Download Le Stum-Boivin et al. supplementary material(File)
File 804.3 KB