Article contents
Seismic-Reflection Identification of Susquehanna River Paleochannels on the Mid-Atlantic Coastal Plain
Published online by Cambridge University Press: 20 January 2017
Abstract
Land-based, high-resolution seismic-reflection methods were used to image Quaternary paleochannels of the Susquehanna River system. Using a portable, 12-channel signal-enhancing seismograph, 12 accelerometers as receivers, and a 4.54-kg sledge hammer struck against an aluminum plate as a source, a sixfold, multichannel seismic profile 2.5 km long was acquired at Taylors Island, Maryland. On the processed seismic profile, pronounced high-amplitude seismic reflections delineate the unconformity between Quaternary and underlying Tertiary sediments and the disconformable contact separating Miocene and Eocene deposits. Subsurface-seismic stratigraphic relationships that clearly indicate the presence of two paleochannels were observed, one believed to be the Exmore paleochannel, projected to underlie northern Taylors Island based on marine seismic data. An overlapping sequence of fill sediments was observed on the eastern margin of the Exmore paleochannel. The second paleochannel may be a tributary of the Exmore or possibly the western edge of the younger Eastville paleochannel. Results from this study indicate that land-based, shallow, high-resolution seismic-reflection data can be used to delineate subsurface geomorphology successfully in coastal plain environments. This technique of defining erosional surfaces and depositional units beneath present land areas, when integrated with chronostratigraphic data, is a powerful tool for developing a better understanding of the Quaternary record.
- Type
- Research Article
- Information
- Copyright
- University of Washington
References
- 7
- Cited by