Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T16:43:25.139Z Has data issue: false hasContentIssue false

Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea

Published online by Cambridge University Press:  20 January 2017

Sébastien Boulay*
Affiliation:
Intéractions et Dynamique des Environnements de Surface, UMR IDES-CNRS 8148, Bât. 504, Université Paris-Sud, 91405 Orsay Cedex, France
Christophe Colin
Affiliation:
Intéractions et Dynamique des Environnements de Surface, UMR IDES-CNRS 8148, Bât. 504, Université Paris-Sud, 91405 Orsay Cedex, France
Alain Trentesaux
Affiliation:
Processus et Bilans des Domaines Sédimentaires, UMR PBDS-CNRS 8110, Université Lille I, 59655 Villeneuve d’Ascq, France
Stéphane Clain
Affiliation:
Mathématiques Appliquées, CNRS-UMR 6620, Université Clermont II, 63117 Aubière, France
Zhifei Liu
Affiliation:
Marine Geology, Tongji University, Shanghai 200092, People’s Republic of China
Christine Lauer-Leredde
Affiliation:
Dynamique de la Lithosphère, Université Montpellier II, 34095 Montpellier cedex 05, France
*
*Corresponding author. Fax: +33 1 69 15 48 82.E-mail address:[email protected] (S. Boulay)

Abstract

Grain-size analyses, coupled with end-member modelling, have been performed on the terrigenous fraction of two Leg 184 Ocean Drilling Program sites (1144 and 1146) from the South China Sea. The grain-size distributions over the last 1.8 Ma enable a new interpretation of their connections to sea-level variations and East Asian monsoon strength. Previous investigations in this area have associated grain-size variability with enhanced eolian input during glacial stages. End-member modelling downgrades the importance of this eolian contribution and indicates that the sediments can be described as a mixture of three end-members: fluvial mud inputs, shelf reworking and river mouth migration. Grain-size variations in the Pleistocene section of the cores indicate a multiple-stage evolution: (i) from 1.8 to 1.25 Ma, the downcore grain-size variations are low but show a correspondence between monsoon rainfall intensity and the fine grain-sized fluvial inputs; no link with sea-level variations is noticeable; (ii) from 1.25 to 0.9 Ma, there is an increase (decrease) in the intermediate (fine) end-member (∼ 100 kyr cycle) that is associated with the onset of a stronger summer monsoon and modest shelf reworking; (iii) from 0.9 to 0 Ma the grain-size record is dominated by global sea-level variations; each glacial stage is associated with extensive shelf reworking and conveyance of coarse particles to the basin.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z. (2000). The history and variability of the east Asian paleomonsoon climate. Quaternary Science Reviews, 19, 171187.CrossRefGoogle Scholar
An, Z., Liu, T., Lu, Y., Porter, S., Kukla, G., Wu, X., Hua, Y.(1990). The long-term paleomonsoon variation recorded by the loess–paleosoils sequence in central China. Quaternary International, 7/8, 9195.Google Scholar
Beaufort, L., de Garidel-Thoron, T., Linsley, B., Oppo, D., Buchet, N.(2003). Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics. Marine Geology, 201, 5365.CrossRefGoogle Scholar
Berger, W.H., Jansen, E.(1994). Mid-Pleistocene climate shift: the Nansen connection. In: Johannessen, O.M., Muensch, R.D., Overland, J.E. . The Role of the Polar Oceans in Shaping the Global Environment. Geophysical Monography of the American Geophysical Union, vol. 85, 295311.Google Scholar
Berné, S., Vagner, P., Guichard, F., Lericolais, G., Liu, Z., Trentesaux, A., Yin, P., Yi, H.I.(" et al., 2002). Pleistocene forced regressions and tidal sand ridges in the East China Sea. Marine Geology, 188, 293315.Google Scholar
Boulay, S., Colin, C., Trentesaux, A., Frank, N., Liu, Z.(2005). Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 3–4, 260270.Google Scholar
Buehring, C., Sarnthein, M., Erlenkeuser, H.(2004). Toward a high-resolution stable isotope stratigraphy of the last 1.1 m.y.: site 1144, South China Sea. Prell, W., Wang, P., Blum, P., Rea, D., Clemens, S. Proc. ODP, Sci. Results, 184([Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/184_SR/205/205.htm)Google Scholar
Clemens, S., Prell, W.(2003). Data report: oxygen and carbon isotopes from Site 1146, northern South China Sea. Prell, W., Wang, P., Blum, P., Rea, D., Clemens, S. Proc. ODP, Sci. Results, 184([Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/184_SR/214/214.htm)Google Scholar
Clemens, S., Prell, W., Murray, D., Shimmield, G., Weedon, G.(1991). Forcing mechanisms of the Indian Ocean Monsoon. Nature, 353, 720725.Google Scholar
Clift, P. (2006). Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters, 241, 3–4, 571580.Google Scholar
Colin, C., Kissel, C., Blamart, D., Turpin, L.(1998). Magnetic properties of sediments in the Bay of Bengal and the Andaman Sea: impact of rapid North Atlantic Ocean climatic events on the strength of the Indian monsoon. Earth and Planetary Science Letters, 160, 623635.Google Scholar
Colin, C., Turpin, L., Bertaux, J., Desprairies, A., Kissel, C.(1999). Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles. Earth and Planetary Science Letters, 171, 647660.Google Scholar
de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., Beaufort, L.(2005). Stable sea surface temperature in the western Pacific warm pool over the past 1.75 million years. Nature, 433, 294298.CrossRefGoogle ScholarPubMed
Ding, Z., Liu, T.-S., Rutter, N., Yu, Z., Guo, Z.-T., Zhu, R.(1995). Ice-volume Forcing of East Asian Winter Monsoon Variations in the Past 800,000 years. Quaternary Research, 44, 149159.Google Scholar
Gildor, H., Tziperman, E.(2000). Sea ice as the glacial cycles' climate switch: role of seasonal and orbital forcing. Paleoceanography, 15, 605615.Google Scholar
Heinrich, R., Baumann, K.-H., Huber, R., Meggers, H.(2002). Carbonate preservation records of the past 3 Myr in the Norwegian-Greenland Sea and the northern North Atlantic: implications for the history of NADW production. Marine Geology, 184, 1739.CrossRefGoogle Scholar
Heslop, D., Langereis, C., Dekkers, M.(2000). A new astronomical timescale for the loess deposits of Northern China. Earth and Planetary Science Letters, 184, 125139.Google Scholar
Imbrie, J., Berger, A., Boyle, E.(1993). On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography, 8, 699735.CrossRefGoogle Scholar
Jian, Z., Huang, B., Kuhnt, W., Lin, H.-L.(2001). Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea. Quaternary Research, 55, 363370.CrossRefGoogle Scholar
Jian, Z., Zhao, Q., Cheng, X., Wang, J., Wang, P., Su, X.(2003). Pliocene–Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 3–4, 425442.CrossRefGoogle Scholar
Liu, Z., Trentesaux, A., Clemens, S., Colin, C., Wang, P., Huang, B., Boulay, S.(2003). Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201, 133146.Google Scholar
McClymont, E., Rosell-Melé, A.(2005). Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition. Geology, 33, 5, 389392.CrossRefGoogle Scholar
Mudelsee, M., Schulz, M.(1997). The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters, 151, 117123.Google Scholar
Paillard, D., Labeyrie, L., Yiou, P.(1996). Analyseries 1.0: a Macintosh software for the analysis of geographical time-series. EOS, 77, 123152.Google Scholar
Pisias, N., Moore, T.(1981). The evolution of Pleistocene climate: a time series approach. Earth and Planetary Science Letters, 52, 450458.Google Scholar
Prins, M.A., Weltje, G.J.(1999). End-member modeling of siliciclastic grain-size distributions: The late Quaternary record of eolian and fluvial sediment supply to the Arabian Sea and its paleoclimatic significance. Harbaugh, J. Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations. SEPM (Society for Sedimentary Geology) Special Publication., vol. 62, 91111.Google Scholar
Prins, M., Postma, G., Cleveringa, J., Cramp, A., Kenyon, N.(2000). Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan. Marine Geology, 169, 327349.Google Scholar
Rea, D., Hovan, S.(1995). Grain-size distribution and depositional processes of the mineral component of abyssal sediments: lessons from the North Pacific. Paleoceanography, 10, 251258.Google Scholar
Rea, D., Leinen, M.(1988). Asian aridity and the zonal westerlies: Late Pleistocene and Holocene record of eolina deposition in the northwest Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 66, 18.Google Scholar
Rutherford, S., D'Hondt, S.(2000). Early onset and tropical forcing of 100,000 Pleistocene glacial cycles. Nature, 408, 7274.CrossRefGoogle Scholar
Sun, X., Luo, Y., Huang, F., Tian, J., Wang, P.(2003). Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Marine Geology, 201, 97118.Google Scholar
Tamburini, F., Adatte, T., Föllmi, K., Bernasconi, S., Steinmann, P.(2003). Investigating the History of East Asian monsoon and climate during the last glacial interglacial period (0–140,000 years): mineralogy and geochemistry of ODP Site 1143 and 1144, South China Sea. Marine Geology, 201, 147168.Google Scholar
Trentesaux, A., Liu, Z., Colin, C., Boulay, S., Wang, P.(2003). Data report: Pleistocene paleoclimatic cyclicity of southern China: clay mineral evidence recorded in the South China Sea (ODP Site 1146). Prell, W., Wang, P., Blum, P., Rea, D., Clemens, S. Proc. ODP, Sci. Results, 184([Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/184_SR/210/210.htm)Google Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., Pflaumann, U.(1999). East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 156, 245284.Google Scholar
Webster, P. (1987). The Elementary Monsoon. John Wiley & Sons, New York., 332.Google Scholar
Wehausen, R., Brumsack, H.-J.(2002). Astronomical forcing of the East Asian monsoon morrored by the composition of Pliocene South China Sea sediments. Earth and Planetary Science Letters, 201, 621636.CrossRefGoogle Scholar
Wehausen, R., Tian, J., Brumsack, H.-J., Cheng, X., Wang, P.(2003). Geochemistry of Pliocene sediments from ODP Site 1143 (southern South China Sea). Prell, W., Wang, P., Blum, P., Rea, D., Clemens, S. Proc. ODP, Sci. Results, 184([Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/184_SR/201/201.htm)Google Scholar
Wei, G., Liu, Y., Li, X.-H., Shao, L., Fang, D.(2004). Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 212, 3–4, 331342.Google Scholar
Weltje, G. (1997). End-member modelling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Journal of Mathematical Geology, 29, 503549.Google Scholar
Xiao, J., An, Z.(1999). Three large shifts in East Asian monsoon circulation indicated by loess–paleosol sequences in China and late Cenozoic deposits in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 179189.Google Scholar
Xiao, J., Porter, S., An, Z., Kumai, H., Yoshikawa, S.(1995). Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130,000 yr. Quaternary Research, 43, 2229.Google Scholar
Zhang, J., Huang, W., Liu, M.(1994). Geochemistry of major Chinese river-estuary systems. Zhou, D. Oceanology of China Seas, vol. 1, Kluwer Academic, Dordrecht., 179188.Google Scholar
Zheng, F., Li, Q., Li, B., Chen, M., Tu, X., Tian, J., Jian, Z.(2005). A millennial scale planktonic foraminifer record of the mid-Pleistocene climate transition from the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 349363.Google Scholar