Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T08:59:00.411Z Has data issue: false hasContentIssue false

Sea surface temperature seasonality in the northern South China Sea during the middle Holocene derived from high resolution Sr/Ca ratios of Tridacna shells

Published online by Cambridge University Press:  16 June 2021

Pengchao Zhou
Affiliation:
Interdisciplinary Research Center of Earth Science Frontier (IRCESF), Beijing Normal University, Beijing100875, China State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Hong Yan*
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Ge Shi
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Chengcheng Liu
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Fan Luo
Affiliation:
Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
Tao Han
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Guozhen Wang
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Hanfeng Wen
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Nanyu Zhao
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
John Dodson
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Yue Li
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Weijian Zhou
Affiliation:
Interdisciplinary Research Center of Earth Science Frontier (IRCESF), Beijing Normal University, Beijing100875, China State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
*
*Corresponding author: E-mail address: <[email protected]>

Abstract

Seasonal climate variability is an important component of Earth's climate system, and has a significant impact on ecosystems and social systems. However, the temporal resolution of most proxy-based paleoclimate records is limiting to fully understand the past seasonal changes. Here, we used high-precision monthly resolution Sr/Ca records of three Tridacna squamosa specimens from the northern South China Sea (SCS) to reconstruct the sea surface temperature (SST) seasonality during three time periods from the middle Holocene. The results suggested that SST seasonality in the northern SCS during the middle Holocene (3.21 ± 0.98°C) was smaller than that for recent decades (AD 1994–2004, 4.32 ± 0.59°C). Analysis of modern instrumental data showed that the SST seasonality in the northern SCS was dominated by the winter SST, which was deeply influenced by the intensity of East Asian winter monsoon (EAWM). A strong EAWM usually resulted in cooler winter SST and a larger SST seasonality in the northern SCS. The reconstructed Holocene EAWM records showed that the EAWM strengthened from the middle to late Holocene, which was seen in our reconstruction of less SST seasonality changes during the middle Holocene in the northern SCS. This study highlighted that the Sr/Ca ratios from Tridacna shells can be used as a potential high-resolution indicator of past seasonal climate changes.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aharon, P., 1983. 140,000-yr isotope climatic record from raised coral reefs in New Guinea. Nature 304, 720723.10.1038/304720a0CrossRefGoogle Scholar
Aharon, P., 1991. Recorders of reef environment histories: stable isotopes in corals, giant clams, and calcareous algae. Coral Reefs 10, 7190.10.1007/BF00571826CrossRefGoogle Scholar
Aharon, P., Chappell, J., 1986. Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years. Palaeogeography, Palaeoclimatology, Palaeoecology 56, 337379.10.1016/0031-0182(86)90101-XCrossRefGoogle Scholar
Alibert, C., McCulloch, M.T., 1997. Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO. Paleoceanography and Paleoclimatology 12, 345363.10.1029/97PA00318CrossRefGoogle Scholar
Andreasson, F.P., Schmitz, B., 2000. Temperature seasonality in the early middle Eocene North Atlantic region: Evidence from stable isotope profiles of marine gastropod shells. Geological Society of America Bulletin 112, 628640.10.1130/0016-7606(2000)112<628:TSITEM>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
An, Z., Kukla, G., Porter, S., Xiao, J., 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36, 2936.10.1016/0033-5894(91)90015-WCrossRefGoogle Scholar
Arias-Ruiz, C., Elliot, M., Bézos, A., Pedoja, K., Husson, L., Cahyarini, S.Y., Cariou, E., Michel, E., La, C., Manssouri, F., 2017. Geochemical fingerprints of climate variation and the extreme La Niña 2010–11 as recorded in a Tridacna squamosa shell from Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 487, 216228.10.1016/j.palaeo.2017.08.037CrossRefGoogle Scholar
Arthur, M.A., Williams, D.F., Jones, D.S., 1983. Seasonal temperature-salinity changes and thermocline development in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology 11, 655659.10.1130/0091-7613(1983)11<655:STCATD>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Ayling, B.F., Chappell, J., Gagan, M.K., McCulloch, M.T., 2015. ENSO variability during MIS 11 (424–374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea. Earth and Planetary Science Letters 431, 236246.CrossRefGoogle Scholar
Batenburg, S.J., Reichart, G., Jilbert, T., Janse, M., Wesselingh, F.P., Renema, W., 2011. Interannual climate variability in the Miocene: High resolution trace element and stable isotope ratios in giant clams. Palaeogeography, Palaeoclimatology, Palaeoecology 306, 7581.10.1016/j.palaeo.2011.03.031CrossRefGoogle Scholar
Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P., Henin, C., 1992. Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257, 644647.10.1126/science.257.5070.644CrossRefGoogle ScholarPubMed
Bolton, A., Goodkin, N.F., Hughen, K., Ostermann, D.R., Vo, S.T., Phan, H.K., 2014. Paired Porites coral Sr/Ca and δ18O from the western South China Sea: Proxy calibration of sea surface temperature and precipitation. Palaeogeography, Palaeoclimatology, Palaeoecology 410, 233243.10.1016/j.palaeo.2014.05.047CrossRefGoogle Scholar
Brocas, W.M., Felis, T., Gierz, P., Lohmann, G., Werner, M., Obert, J.C., Scholz, D., Kölling, M., Scheffers, S.R., 2018. Last interglacial hydroclimate seasonality reconstructed from tropical Atlantic corals. Paleoceanography and Paleoclimatology 33, 198213.10.1002/2017PA003216CrossRefGoogle Scholar
Butler, P.G., Wanamaker, A.D., Scourse, J.D., Richardson, C.A., Reynolds, D.J., 2011. Long-term stability of δ13C with respect to biological age in the aragonite shell of mature specimens of the bivalve mollusk Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 2130.10.1016/j.palaeo.2010.03.038CrossRefGoogle Scholar
Chen, C.Y., McGee, D., Woods, A., Pérez, L., Hatfield, R.G., Edwards, R.L., Cheng, H., et al. , 2020. U-Th dating of lake sediments: Lessons from the 700 ka sediment record of Lake Junín, Peru. Quaternary Science Reviews 244, 106422. https://doi.org/10.1016/j.quascirev.2020.106422.CrossRefGoogle Scholar
Chen, F., Wu, W., Holmes, J.A., Madsen, D.B., Zhu, Y., Jin, M., Oviatt, C.G., 2003. A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China. Chinese Science Bulletin 48, 1401. https://doi.org/10.1360/03wd0245.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Southon, J., Matsumoto, K., Feinberg, J.M., Sinha, A., Zhou, W., et al. , 2018. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362, 12931297.10.1126/science.aau0747CrossRefGoogle ScholarPubMed
Chen, T.R., Yu, K., Chen, T., 2013. Sr/Ca–sea surface temperature calibration in the coral Porites lutea from subtropical northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 392, 98104.10.1016/j.palaeo.2013.09.004CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., et al. , 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.10.1038/364218a0CrossRefGoogle Scholar
Deng, W., Wei, G., Zhao, J., Zeng, T., 2019. Anthropogenic effects on tropical oceanic climate change and variability: An insight from the South China Sea over the past 2000 years. Quaternary Science Reviews 206, 5664.CrossRefGoogle Scholar
de Villiers, S., 1999. Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth and Planetary Science Letters 171, 623634.10.1016/S0012-821X(99)00174-0CrossRefGoogle Scholar
de Villiers, S., Nelson, B.K., Chivas, A.R., 1995. Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269, 12471249.10.1126/science.269.5228.1247CrossRefGoogle Scholar
Driscoll, R., Elliot, M., Russon, T., Welsh, K., Yokoyama, Y., Tudhope, A., 2014. ENSO reconstructions over the past 60 ka using giant clams (Tridacna spp.) from Papua New Guinea. Geophysical Research Letters 41, 68196825.CrossRefGoogle Scholar
Eawag, A.F.L., Eicher, U., Siegenthaler, U., Birks, H.J.B., 1992. Late-glacial climatic oscillations as recorded in Swiss lake sediments. Journal of Quaternary Science 7, 187204.10.1002/jqs.3390070302CrossRefGoogle Scholar
Elliot, M., Welsh, K., Chilcott, C., McCulloch, M., Chappell, J., Ayling, B., 2009. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 132142.10.1016/j.palaeo.2009.06.007CrossRefGoogle Scholar
Fritts, H.C., Lofgren, G.R., Gordon, G.A., 1979. Variations in climate since 1602 as reconstructed from tree rings. Quaternary Research 12, 1846.10.1016/0033-5894(79)90090-5CrossRefGoogle Scholar
García-Escárzaga, A.G., Clarke, L.J., Gutiérrez-Zugasti, I., González-Morales, M., López-Higuera, J.M., Cobo, A., 2018. Mg/Ca profiles within archaeological mollusc (Patella vulgata) shells: Laser-induced breakdown spectroscopy compared to inductively coupled plasma-optical emission spectrometry. Spectrochimica Part B: Atomic Spectroscopy 148, 815.10.1016/j.sab.2018.05.026CrossRefGoogle Scholar
Goodkin, N.F., Hughen, K.A., Cohen, A.L., Smith, S.R., 2005. Record of Little Ice Age sea surface temperatures at Bermuda using a growth-dependent calibration of coral Sr/Ca. Paleoceanography and Paleoclimatology 20, PA4016. https://doi.org/10.1029/2005PA001140.Google Scholar
Gorman, M.K., Quinn, T.M., Taylor, F.W., Partin, J.W., Cabioch, G., Austin, J.A., Pelletier, B., Ballu, V., Maes, C., Saustrup, S., 2012. A coral-based reconstruction of sea surface salinity at Sabine Bank, Vanuatu from 1842 to 2007 CE. Paleoceanography and Paleoclimatology 27, PA3226. https://doi.org/10.1029/2012PA002302.Google Scholar
Griffin, S., and Druffel, E. 1985. Woods Hole Oceanographic Institution Radiocarbon Laboratory: sample treatment and gas preparation. Radiocarbon 27, p. 4351.10.1017/S0033822200006925CrossRefGoogle Scholar
Hu, Y., Sun, X., Cheng, H., Yan, H., 2020. Evidence from giant-clam δ18O of intense El Ninõ–Southern Oscillation-related variability but reduced frequency 3700 years ago. Climate of the Past 16, 597610.10.5194/cp-16-597-2020CrossRefGoogle Scholar
Kang, S., Du, J., Wang, N., Dong, J., Wang, D., Wang, X., Qiang, X., Song, Y., 2020. Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon. Geology 48, 10431047.10.1130/G47621.1CrossRefGoogle Scholar
Kim, J., An, S., Jun, S., Park, H., Yeh, S., 2017. ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dynamics 49, 11571179.CrossRefGoogle Scholar
Liu, C., Yan, H., Fei, H., Ma, X., Zhang, W., Shi, G., Soon, W., Dodson, J., An, Z., 2019. Temperature seasonality and ENSO variability in the northern South China Sea during the Medieval Climate Anomaly interval derived from the Sr/Ca ratios of Tridacna shell. Journal of Asian Earth Sciences 180, 103880. https://doi.org/10.1016/j.jseaes.2019.103880.CrossRefGoogle Scholar
Marcott, S.A., Shakun, J.D., Clark, P.U., Mix, A.C., 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 11981201.10.1126/science.1228026CrossRefGoogle ScholarPubMed
Ma, Y., Zhang, H., Pachur, H.-J., Wünnemann, B., Li, J., Feng, Z., 2004. Modern pollen-based interpretations of mid-Holocene palaeoclimate (8500 to 3000 cal. BP) at the southern margin of the Tengger Desert, northwestern China. The Holocene 14, 841850.10.1191/0959683604hl764rpCrossRefGoogle Scholar
McCulloch, M., Mortimer, G., Esat, T., Li, X., Pillans, B., Chappell, J., 1996. High resolution windows into early Holocene climate: SrCa coral records from the Huon Peninsula. Earth and Planetary Science Letters 138, 169178.CrossRefGoogle Scholar
McCulloch, M.T., Gagan, M.K., Mortimer, G.E., Chivas, A.R., Isdale, P.J., 1994. A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Nino. Geochimica et Cosmochimica Acta 58, 27472754.10.1016/0016-7037(94)90142-2CrossRefGoogle Scholar
Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh Program performs time-series analysis. Eos 77, 379.10.1029/96EO00259CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., et al. , 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.10.1038/20859CrossRefGoogle Scholar
Polyak, V.J., Cokendolpher, J.C., Norton, R.A., Asmerom, Y., 2001. Wetter and cooler late Holocene climate in the southwestern United States from mites preserved in stalagmites. Geology 29, 643646.10.1130/0091-7613(2001)029<0643:WACLHC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Ren, X., Sha, Y., Shi, Z., Liu, X., 2021. Response of summer extreme precipitation over East Asia during the mid-Holocene versus future global warming. Global and Planetary Change 197, 103398. https://doi.org/10.1016/j.gloplacha.2020.103398.CrossRefGoogle Scholar
Roig, F.A., Le-Quesne, C., Boninsegna, J.A., Briffa, K.R., Lara, A., Grudd, H., Jones, P.D., Villagrán, C., 2001. Climate variability 50,000 years ago in mid-latitude Chile as reconstructed from tree rings. Nature 410, 567570.10.1038/35069040CrossRefGoogle ScholarPubMed
Rosewater, J., 1964. The Family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca 1, 327394.Google Scholar
Schöne, B.R., Pfeiffer, M., Pohlmann, T., Siegismund, F., 2005. A seasonally resolved bottom-water temperature record for the period AD 1866–2002 based on shells of Arctica islandica (Mollusca, North Sea). International Journal of Climatology 25, 947962.10.1002/joc.1174CrossRefGoogle Scholar
Shao, D., Mei, Y., Yang, Z., Wang, Y., Yang, W., Gao, Y., Yang, L., Sun, L., 2020. Holocene ENSO variability in the South China Sea recorded by high-resolution oxygen isotope records from the shells of Tridacna spp. Nature Scientific Reports 10, 3921. https://doi.org/10.1038/s41598-020-61013-2.CrossRefGoogle ScholarPubMed
Shao, D., Yan, H., Wang, Y., Sun, L., 2012. High resolution Sr/Ca profiles of three Tridacna specimens and their potential as sea surface temperature proxy. Journal of University of Science and Technology of China 42, 19.Google Scholar
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., W-S Yim, W., 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167180.10.1017/S0033822200064778CrossRefGoogle Scholar
Sun, D., Gagan, M.K., Cheng, H., Scott-Gagan, H., Dykoski, C.A., Edwards, R.L., Sua, R.X., 2005. Seasonal and interannual variability of the Mid-Holocene East Asian monsoon in δ18O coral records from the South China Sea. Earth and Planetary Science Letters 237, 6984.10.1016/j.epsl.2005.06.022CrossRefGoogle Scholar
Tian, Q., Gou, X., Zhang, Y., Peng, J., Wang, J., Chen, T., 2007. Tree-ring based drought reconstruction (A.D. 1855–2001) for the Qilian Mountains, northwestern China. Tree-Ring Research 63, 2736.10.3959/1536-1098-63.1.27CrossRefGoogle Scholar
Versteegh, E.A.A., Vonhof, H.B., Troelstra, S.R., Kaandorp, R.J.G., Kroon, D., 2010. Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry. Geochemistry, Geophysics, Geosystems 11, Q08022. https://doi.org/10.1029/2009GC002961.CrossRefGoogle Scholar
Wanamaker, A.D., Kreutz, K.J., Schöne, B.R., Introne, D.S., 2011. Gulf of Maine shells reveal changes in seawater temperature seasonality during the Medieval Climate Anomaly and the Little Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 4351.CrossRefGoogle Scholar
Wang, H., He, S., 2012. Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chinese Science Bulletin 57, 35353540.10.1007/s11434-012-5285-xCrossRefGoogle Scholar
Watanabe, T., Oba, T., 1999. Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique. Journal of Geophysical Research 104, 2066720674.10.1029/1999JC900097CrossRefGoogle Scholar
Watanabe, T., Suzuki, A., Kawahata, H., Kan, H., Ogawa, S., 2004. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 212, 343354.10.1016/S0031-0182(04)00358-XCrossRefGoogle Scholar
Wei, G., Deng, W., Yu, K., Li, X., Sun, W., Zhao, J., 2007. Sea surface temperature records in the northern South China Sea from mid-Holocene coral Sr/Ca ratios. Paleoceanography 22, PA3206. https://doi.org/10.1029/2006PA001270.CrossRefGoogle Scholar
Wei, G., Sun, M., Li, X., Nie, B., 2000. Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 5974.10.1016/S0031-0182(00)00105-XCrossRefGoogle Scholar
Wei, G., Yu, K., Zhao, J., 2004. Sea surface temperature variations recorded on coralline Sr/Ca ratios during Mid-Late Holocene in Leizhou Peninsula. Chinese Science Bulletin 49, 18761881.Google Scholar
Welsh, K., Elliot, M., Tudhope, A., Ayling, B., Chappell, J., 2011. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth and Planetary Science Letters 307, 266270.10.1016/j.epsl.2011.05.032CrossRefGoogle Scholar
Winter, N.J., Vellekoop, J., Clark, A.J., Stassen, P., Speijer, R.P., Claeys, P., 2020. The giant marine gastropod Campanile giganteum (Lamarck, 1804) as a high-resolution archive of seasonality in the Eocene greenhouse world. Geochemistry, Geophysics, Geosystems 21, e2019GC008794. https://doi.org/10.1029/2019GC008794.CrossRefGoogle Scholar
Xu, X., Trumbore, S.E., Zheng, S., Southon, J.R., McDuffee, K.E., Luttgen, M., Liu, J.C., 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259, 320329.10.1016/j.nimb.2007.01.175CrossRefGoogle Scholar
Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F., Liu, J., Sigman, D.M., Peterson, L.C., Haug, G.H., 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445, 7477.CrossRefGoogle ScholarPubMed
Yan, H., Liu, C., An, Z., Yang, W., Yang, Y., Huang, P., Qiu, S., et al. , 2020. Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells. Proceedings of the National Academy of Sciences of the United States of America 117, 70387043.10.1073/pnas.1916784117CrossRefGoogle ScholarPubMed
Yan, H., Liu, C., Zhang, W., Li, M., Zheng, X., Wei, G., Xie, L., Deng, W., Sun, L., 2017. ENSO variability around 2000 years ago recorded by Tridacna gigas δ18O from the South China Sea. Quaternary International 452, 148154.CrossRefGoogle Scholar
Yan, H., Shao, D., Wang, Y., Sun, L., 2013. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy. Geochimica et Cosmochimica Acta 112, 5265.10.1016/j.gca.2013.03.007CrossRefGoogle Scholar
Yan, H., Shao, D., Wang, Y., Sun, L., 2014a. Sr/Ca differences within and among three Tridacnidae species from the South China Sea: Implication for paleoclimate reconstruction. Chemical Geology 390, 2231.CrossRefGoogle Scholar
Yan, H., Sun, L., Shao, D., Wang, Y., 2015. Seawater temperature seasonality in the South China Sea during the Late Holocene derived from high-resolution Sr/Ca ratios of Tridacna gigas. Quaternary Research 83, 298306.CrossRefGoogle Scholar
Yan, H., Sun, L., Shao, D., Wang, Y., Wei, G., 2014b. Higher sea surface temperature in the northern South China Sea during the natural warm periods of late Holocene than recent decades. Chinese Science Bulletin 59, 41154122.10.1007/s11434-014-0317-3CrossRefGoogle Scholar
Yan, H., Wang, Y., Sun, L., 2014c. High resolution oxygen isotope and grayscale records of a medieval fossil giant clam (Tridacna gigas) in the South China Sea: physiological and paleoclimatic implications. Acta Oceanologica Sinica 33, 1825.10.1007/s13131-014-0399-4CrossRefGoogle Scholar
Yu, K., Zhao, J., Wei, G., Cheng, X., Chen, T., Felis, T., Wang, P., Liu, T., 2005b. δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators. Palaeogeography, Palaeoclimatology, Palaeoecology 218, 5773.CrossRefGoogle Scholar
Yu, K., Zhao, J., Wei, G., Cheng, X., Wang, P., 2005a. Mid–late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea. Global and Planetary Change 47, 301316.CrossRefGoogle Scholar
Zaw, Z., Fan, Z.X., Bräuning, A., Xu, C.X., Liu, W.J., Gaire, N.P., Panthi, S., Than, K.Z., 2020. Drought reconstruction over the past two centuries in southern Myanmar using Teak tree-rings: linkages to the Pacific and Indian oceans. Geophysical Research Letters 47, e2020GL087627. https://doi.org/10.1029/2020GL087627.CrossRefGoogle Scholar
Zhang, Y., Zhu, K., Huang, C., Kong, D., He, Y., Wang, H., Liu, W., Xie, Z., Wei, G., Liu, Z., 2019. Asian winter monsoon imprint on Holocene SST changes at the northern coast of the South China Sea. Geophysical Research Letters 46, 1336313370.10.1029/2019GL085617CrossRefGoogle Scholar
Zheng, X.F., Li, A.C., Wan, S.M., Jiang, F.Q., Kao, S.J., Johnson, C., 2014. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough. Journal of Geophysical Research 119, 44104429.10.1002/2013JC009603CrossRefGoogle Scholar
Supplementary material: File

Zhou et al. supplementary material

Figures S1-S3

Download Zhou et al. supplementary material(File)
File 391.8 KB