Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:30:32.226Z Has data issue: false hasContentIssue false

The role of climate and tectonics in aggradation and incision of the Indus River in the Ladakh Himalaya during the late Quaternary

Published online by Cambridge University Press:  25 May 2017

Anil Kumar
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, India
Pradeep Srivastava*
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, India
*
*Corresponding author at: Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, India. E-mail: [email protected] (P. Srivastava).

Abstract

The geomorphic evolution of the upper Indus River that traverses across the southwest (SW) edge of Tibet, and the Ladakh and Zanskar ranges, was examined along a ~350-km-long stretch of its reaches. Based on the longitudinal river profile, stream length gradient index, and river/strath terraces, this stretch of the river is divided into four segments. Valley fill river terraces are ubiquitous, and strath terraces occur in the lower reaches where the Indus River cuts through deformed Indus Molasse. Optically stimulated luminescence ages of river/strath terraces suggest that valley aggradation occurred in three pulses, at ~52, ~28, and ~16 ka, and that these broadly coincide with periods of stronger SW Indian summer monsoon. Reconstructed longitudinal river profiles using strath terraces provide an upper limit on the bedrock and provide incision rates ranging from 1.0±0.3 to 2.2±0.9 mm/a. These results suggested that rapid uplift of the western syntaxes aided by uplift along the local faults led to the formation of strath terraces and increased fluvial incision rates along this stretch of the river.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, M.J., 1998. An Introduction to Optical Dating. Academic Press, London.CrossRefGoogle Scholar
Ali, K.F., de Boer, D.H., 2010. Spatially distributed erosion and sediment yield modelling in the upper Indus River basin. Water Resources Research 46, W08504. http://dx.doi.org/10.1029/2009WR008762.CrossRefGoogle Scholar
Ali, S.N., Juyal, N., 2013. Chronology of late quaternary glaciations in Indian Himalaya: a critical review. Journal of the Geological Society of India 82, 628638.Google Scholar
Anders, A.M., Roe, G.H., Hallet, B., Montgomery, D.R., Finnegan, N.J., Putkonen, J., 2006. Spatial patterns of precipitation and topography in the Himalaya. Geological Society of America, Special Papers 398, 3953.Google Scholar
Anoop, A., Prasad, S., Krishnan, R., Naumann, R., Dulski, P., 2013. Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quaternary International 313, 7484.CrossRefGoogle Scholar
Bagati, T.N., Mazari, R.K., Rajagopalan, G., 1996. Palaeotectonic implication of Lamayuru Lake (Ladakh). Current Science 71, 479482.Google Scholar
Blöthe, J.H., Munack, H., Korup, O., Fülling, A., Garzanti, E., Resentini, A., Kubik, P.W., 2014. Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quaternary Science Reviews 94, 102119.CrossRefGoogle Scholar
Blum, M.D., Törnqvist, T.E., 2000. Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology 47, 248.CrossRefGoogle Scholar
Bookhagen, B., Burbank, D.W., 2010. Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface 115, F03019. http://dx.doi.org/10.1029/2009JF001426.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R.C., Strecker, M.R., 2005. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 149152.CrossRefGoogle Scholar
Brookfield, M.E., Andrews-Speed, C.P., 1984. Sedimentology, petrography and tectonic significance of the shelf, flysch and molasse clastic deposits across the Indus Suture Zone, Ladakh, NW India. Sedimentary Geology 40, 249286.CrossRefGoogle Scholar
Bull, W.B., 1990. Stream-terrace genesis: implications for soil development. Geomorphology 3, 351367.CrossRefGoogle Scholar
Burbank, D.W., Leland, J., Fielding, E., Anderson, R., Brozovic, N., Reid, M., Duncan, C., 1996. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505510.CrossRefGoogle Scholar
Clarke, M.L., 1996. IRSL dating of sands: bleaching characteristics at deposition inferred from the use of single aliquots. Radiation Measurements 26, 611620.CrossRefGoogle Scholar
Clift, P.D., Giosan, L., 2014. Sediment fluxes and buffering in the post-glacial Indus Basin. Basin Research 26, 369386.CrossRefGoogle Scholar
Colls, A.E., Stokes, S., Blum, M.D., Straffin, E., 2001. Age limits on the Late Quaternary evolution of the upper Loire River. Quaternary Science Reviews 20, 743750.CrossRefGoogle Scholar
Cronin, V.S., 1989. Structural setting of the Skardu intermontane basin, Karakorum Himalaya, Pakistan. Geological Society of America, Special Papers 232, 183–202.CrossRefGoogle Scholar
Crosby, B.T., Whipple, K.X., 2006. Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology 82, 1638.CrossRefGoogle Scholar
Demske, D., Tarasov, P.E., Wünnemann, B., Riedel, F., 2009. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeography, Palaeoclimatology, Palaeoecology 279, 172185.CrossRefGoogle Scholar
Derbyshire, E., Owen, L.A., 1997. Quaternary glacial history of the Karakoram Mountains and Northwest Himalayas: a review. Quaternary International 38, 85102.CrossRefGoogle Scholar
Devrani, R., Singh, V., 2014. Evolution of valley-fill terraces in the Alaknanda Valley, NW Himalaya: its implication on river response studies. Geomorphology 227, 112122.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W., 2013. Timing and climatic drivers for glaciation across semi-arid western Himalayan Tibetan orogen. Quaternary Science Reviews 78, 188208.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Dietsch, C., Caffee, M.W., Bovard, K., 2011a. Episodic fluvial incision of rivers and rock uplift in the Himalaya and Trans-Himalaya. Journal of the Geological Society 168, 783804.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Haneberg, W.C., Caffee, M.W., Dietsch, C., Kamp, U., 2009. Nature and timing of large landslides in the Himalaya and Trans Himalaya of northern India. Quaternary Science Reviews 28, 10371054.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Schoenbohm, L.M., Caffee, M.W., 2011b. Asymmetrical erosion and morphological development of the central Ladakh Range, northern India. Geomorphology 135, 167180.CrossRefGoogle Scholar
Drew, F., 1873. Alluvial and lacustrine deposits and glacial records of the Upper-Indus Basin. Quarterly Journal of the Geological Society 29, 441471.CrossRefGoogle Scholar
Dutta, S., Suresh, N., Kumar, R., 2012. Climatically controlled Late Quaternary terrace staircase development in the fold-and-thrust belt of the Sub Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology 356, 1626.CrossRefGoogle Scholar
Fang, J.Q., 1991. Lake evolution during the past 30,000 years in China, and its implications for environmental change. Quaternary Research 36, 3760.CrossRefGoogle Scholar
Fort, M., 2000. Glaciers and mass wasting processes: their influence on the shaping of the Kali Gandaki valley (higher Himalaya of Nepal). Quaternary International 65, 101119.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Gardner, T.W., 1975. The history of part of the Colorado River and its tributaries: an experimental study. Four Corners Geological Society Guidebook 8, 8795.Google Scholar
Gardner, T.W., 1983. Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material. Geological Society of America Bulletin 94, 664672.2.0.CO;2>CrossRefGoogle Scholar
Garzanti, E., Vezzoli, G., Andó, S., Paparella, P., Clift, P., 2005. Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan syntaxis. Earth and Planetary Science Letters 229, 287302.CrossRefGoogle Scholar
Goodbred, S.L., 2003. Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade. Sedimentary Geology 162, 83104.CrossRefGoogle Scholar
Hack, J.T., 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey 1, 421429.Google Scholar
Hancock, G.S., Anderson, R.S., 2002. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geological Society of America Bulletin 114, 11311142.2.0.CO;2>CrossRefGoogle Scholar
Henderson, A.L., Najman, Y., Parrish, R., BouDagher-Fadel, M., Barford, D., Garzanti, E., Andò, S., 2010. Geology of the Cenozoic Indus Basin sedimentary rocks: paleoenvironmental interpretation of sedimentation from the western Himalaya during the early phases of India-Eurasia collision. Tectonics 29, TC6015. http://dx.doi.org/10.1029/2009TC002651.CrossRefGoogle Scholar
Henderson, A.L., Najman, Y., Parrish, R., Mark, D.F., Foster, G.L., 2011. Constraints to the timing of India–Eurasia collision: a re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus–Tsangpo Suture Zone, Ladakh, India. Earth-Science Reviews 106, 265292.CrossRefGoogle Scholar
Hobley, D.E., Sinclair, H.D., Mudd, S.M., 2012. Reconstruction of a major storm event from its geomorphic signature: the Ladakh floods, 6 August 2010. Geology 40, 483486.CrossRefGoogle Scholar
Howard, J.L., 1993. The statistics of counting clasts in rudites: a review, with examples from the upper Palaeogene of southern California, USA. Sedimentology 40, 157174.CrossRefGoogle Scholar
Jade, S., Rao, H.J.R., Vijayan, M.S.M., Gaur, V.K., Bhatt, B.C., Kumar, K., Jaganathan, S., Ananda, M.B., Kumar, P.D., 2011. GPS-derived deformation rates in northwestern Himalaya and Ladakh. International Journal of Earth Sciences 100, 12931301.CrossRefGoogle Scholar
Jain, M., Murray, A.S., Bøtter-Jensen, L., Wintle, A.G., 2005. A single-aliquot regenerative-dose method based on IR bleaching of the fast OSL component in quartz. Radiation Measurements 39, 309318.CrossRefGoogle Scholar
Jamieson, S.S.R., Sinclair, H.D., Kirstein, L.A., Purves, R.S., 2004. Tectonic forcing of longitudinal valleys in the Himalaya: morphological analysis of the Ladakh Batholith, North India. Geomorphology 58, 4965.CrossRefGoogle Scholar
Jung, S.J.A., Kroon, D., Ganssen, G., Peeters, F., Ganeshram, R., 2009. Enhanced Arabian Sea intermediate water flow during glacial North Atlantic cold phases. Earth and Planetary Science Letters 280, 220228.CrossRefGoogle Scholar
Jung, S.J.A., Kroon, D., Ganssen, G., Peeters, F., Ganeshram, R., 2010. Arabian Sea NIOP905 87KYr Benthic Stable Isotope Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series No. 2010-034. National Oceanic and Atmospheric Administration/National Climatic Data Center Paleoclimatology Program, Boulder, CO.Google Scholar
Juyal, N., Pant, R.K., Basavaiah, N., Bhushan, R., Jain, M., Saini, N.K., Yadava, M.G., Singhvi, A.K., 2009. Reconstruction of Last Glacial to early Holocene monsoon variability from relict lake sediments of the Higher Central Himalaya, Uttrakhand, India. Journal of Asian Earth Sciences 34, 437449.CrossRefGoogle Scholar
Juyal, N., Sundriyal, Y.P., Rana, N., Chaudhary, S., Singhvi, A.K., 2010. Late Quaternary fluvial aggradation and incision in the monsoon-dominated Alaknanda valley, Central Himalaya, Uttrakhand, India. Journal of Quaternary Science 25, 12931304.CrossRefGoogle Scholar
Kirby, E., Whipple, K.X., Tang, W., Chen, Z., 2003. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research: Solid Earth 108, 2217.CrossRefGoogle Scholar
Korup, O., Strom, A.L., Weidinger, J.T., 2006. Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology 78, 321.CrossRefGoogle Scholar
Kumar, A., Srivastava, P., Meena, N.K., 2016. Late Pleistocene aeolian activity in the cold desert of Ladakh: a record from sand ramps. Quaternary International (in press). http://dx.doi.org/10.1016/j.quaint.2016.04.006.CrossRefGoogle Scholar
Lang, T.J., Barros, A.P., 2004. Winter storms in the central Himalayas. Journal of the Meteorological Society of Japan 82, 829844.Google Scholar
Lavé, J., Avouac, J.P., 2000. Active folding of fluvial terraces across the Siwalik Hills, Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth 105, 57355770.CrossRefGoogle Scholar
Lavé, J., Avouac, J.P., 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth 106, 2656126591.CrossRefGoogle Scholar
Leland, J., Reid, M.R., Burbank, D.W., Finkel, R., Cafee, M., 1998. Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths. Earth and Planetary Science Letters 154, 93107.CrossRefGoogle Scholar
Li, J., Zhou, Y., 2001. Palaeovegetation type analysis of the late Pliocene in Zanda basin of Tibet. Journal of Palaeogeography 14, 5258.Google Scholar
Liu, D. (Ed.), 1981. Geological and Ecological Studies of Qinghai-Xizang Plateau. Vol. 1, Geologic, Geological History and Origin of Qinghai-Xizang Plateau. Science Press, Beijing.Google Scholar
Miall, A.D., 1996. The Geology of Fluvial Deposits. Springer, Berlin.Google Scholar
Morell, K.D., Sandiford, M., Rajendran, C.P., Rajendran, K., Alimanovic, A., Fink, D., Sanwal, J., 2015. Geomorphology reveals active décollement geometry in the central Himalayan seismic gap. Lithosphere 7, 247256.CrossRefGoogle Scholar
Munack, H., Korup, O., Resentini, A., Limonta, M., Garzanti, E., Blöthe, J.H., Scherler, D., Wittmann, H., Kubik, P.W., 2014. Postglacial denudation of western Tibetan Plateau margin outpaced by long-term exhumation. Geological Society of America Bulletin 126, 15801594.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Nag, D., Phartiyal, B., 2015. Climatic variations and geomorphology of the Indus River valley, between Nimo and Batalik, Ladakh (NW Trans Himalayas) during Late Quaternary. Quaternary International 371, 87101.CrossRefGoogle Scholar
Nag, D., Phartiyal, B., Singh, D.S., 2016. Sedimentary characteristics of palaeolake deposits along the Indus River valley, Ladakh, Trans‐Himalaya: implications for the depositional environment. Sedimentology 63, 17651785.CrossRefGoogle Scholar
Owen, L.A., Bailey, R.M., Rhodes, E.J., Mitchell, W.A., Coxon, P., 1997. Style and timing of glaciation in the Lahul Himalaya, northern India: a framework for reconstructing late Quaternary palaeoclimatic change in the western Himalayas. Journal of Quaternary Science 12, 83109.3.0.CO;2-P>CrossRefGoogle Scholar
Owen, L.A., Benn, D.I., 2005. Equilibrium-line altitudes of the Last Glacial Maximum for the Himalaya and Tibet: an assessment and evaluation of results. Quaternary International 138, 5578.CrossRefGoogle Scholar
Owen, L.A., Caffee, M.W., Bovard, K.R., Finkel, R.C., Sharma, M.C., 2006a. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India. Geological Society of America Bulletin 118, 383392.CrossRefGoogle Scholar
Owen, L.A., Caffee, M.W., Finkel, R.C., Seong, B.Y., 2008. Quaternary glaciations of the Himalayan Tibetan orogen. Journal of Quaternary Science 23, 513532.CrossRefGoogle Scholar
Owen, L.A., Dortch, J.M., 2014. Nature and timing of Quaternary glaciation in the Himalayan Tibetan orogen. Quaternary Science Reviews 88, 1454.CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Barnard, P.L., Haizhou, M., Asahi, K., Caffee, M.W., Derbyshire, E., 2005. Climatic and topographic controls on the style and timing of late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating. Quaternary Science Reviews 24, 13911411.CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Haizhou, M., Barnard, P.L., 2006b. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: a framework for examining the links between glaciation, lake level changes and alluvial fan formation. Quaternary International 154, 7386.CrossRefGoogle Scholar
Owen, L.A., Gualtieri, L., Finkel, R.C., Caffee, M.W., Benn, D.I., Sharma, M.C., 2001. Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation. Journal of Quaternary Science 16, 555563.CrossRefGoogle Scholar
Orr, E.N., Owen, L.A., Murari, M.K., Saha, S., Caffee, M.W., 2017. The timing and extent of Quaternary glaciation of Stok, northern Zanskar Range, Transhimalaya, of northern India. Geomorphology 284, 142155.CrossRefGoogle Scholar
Pant, R.K., Phadtare, N.R., Chamyal, L.S., Juyal, N., 2005. Quaternary deposits in Ladakh and Karakoram Himalaya: a treasure trove of the palaeoclimate records. Current Science 88, 17891798.Google Scholar
Pazzaglia, F.J., Gardner, T.W., Merritts, D.J., 1998. Bedrock fluvial incision and longitudinal profile development over geologic time scales determined by fluvial terraces. In: Tinkler, K.J., Wohl, E.E. (Eds.), Rivers over Rock: Fluvial Processes in Bedrock Channels. American Geophysical Union, Washington, DC, pp. 207235.CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., 2009. Soft-sediment deformation structures in the Late Quaternary sediments of Ladakh: evidence for multiple phases of seismic tremors in the north western Himalayan region. Journal of Asian Earth Sciences 34, 761770.CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., Kothari, G.C., 2013. Existence of Late Quaternary and Holocene lakes along the River Indus in Ladakh region of Trans Himalaya, NW India: implications to climate and tectonics. Chinese Science Bulletin 58, 114.Google Scholar
Phartiyal, B., Sharma, A., Srivastava, P., Ray, Y., 2009. Chronology of relict lake deposits in the Spiti River, NW Tran Himalaya: implications to Late Pleistocene-Holocene climate-tectonic perturbations. Geomorphology 108, 264272.CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., Upadhyay, R., Sinha, A.K., 2005. Quaternary geology, tectonics and distribution of palaeo-and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya—a study based on field observations. Geomorphology 65, 241256.CrossRefGoogle Scholar
Pratt-Sitaula, B., Burbank, D.W., Heimsath, A., Ojha, T., 2004. Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya. Geomorphology 58, 223241.CrossRefGoogle Scholar
Prell, W.L., Kutzbach, J.E., 1987. Monsoon variability over the past 150,000 years. Journal of Geophysical Research: Atmospheres 92, 84118425.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Rawat, S., Gupta, A.K., Sangode, S.J., Srivastava, P., Nainwal, H.C., 2015a. Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quaternary Science Reviews 114, 167181.CrossRefGoogle Scholar
Rawat, S., Gupta, A.K., Srivastava, P., Sangode, S.J., Nainwal, H.C., 2015b. A 13,000 year record of environmental magnetic variations in the lake and peat deposits from the Chandra valley, Lahaul: implications to Holocene monsoonal variability in the NW Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 116127.CrossRefGoogle Scholar
Ray, Y., Srivastava, P., 2010. Widespread aggradation in the mountainous catchment of the Alaknanda Ganga River System: timescales and implications to hinterland foreland relationships. Quaternary Science Reviews 29, 22382260.CrossRefGoogle Scholar
Rogers, R.D., Kárason, H., van der Hilst, R.D., 2002. Epeirogenic uplift above a detached slab in northern Central America. Geology 30, 10311034.2.0.CO;2>CrossRefGoogle Scholar
Saha, S., Sharma, M.C., Murari, M.K., Owen, L.A., Caffee, M.W., 2016. Geomorphology, sedimentology and minimum exposure ages of streamlined subglacial landforms in the NW Himalaya, India. Boreas 45, 284303.CrossRefGoogle Scholar
Sangode, S.J., Phadtare, N.R., Meshram, D.C., Rawat, S., Suresh, N., 2011. A record of lake outburst in the Indus valley of Ladakh Himalaya, India. Current Science 100, 17121718.Google Scholar
Sangode, S.J., Rawat, S., Meshram, D.C., Phadtare, N.R., Suresh, N., 2013. Integrated mineral magnetic and lithologic studies to delineate dynamic modes of depositional conditions in the Leh valley basin, Ladakh Himalaya, India. Journal of the Geological Society of India 82, 107120.CrossRefGoogle Scholar
Sant, D.A., Wadhawan, S.K., Ganjoo, R.K., Basavaiah, N., Sukumaran, P., Bhattacharya, S., 2011a. Linkage of paraglacial processes from last glacial to recent inferred from Spituk sequence, Leh valley, Ladakh Himalaya. Journal of the Geological Society of India 78, 147156.CrossRefGoogle Scholar
Sant, D.A., Wadhawan, S.K., Ganjoo, R.K., Basavaiah, N., Sukumaran, P., Bhattacharya, S., 2011b. Morphostratigraphy and palaeoclimate appraisal of the Leh valley, Ladakh Himalayas, India. Journal of the Geological Society of India 77, 499510.CrossRefGoogle Scholar
Scherler, D., Bookhagen, B., Wulf, H., Preusser, F., Strecker, M.R., 2015. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth and Planetary Science Letters 428, 255266.CrossRefGoogle Scholar
Schumm, S., Mosley, P., Weaver, W., 1987. Experimental Fluvial Geomorphology. John Wiley and Sons, New York.Google Scholar
Searle, M.P., 1986. Structural evolution and sequence of thrusting in the High Himalayan, Tibetan-Tethys and Indus suture zones of Zanskar and Ladakh, Western Himalaya. Journal of Structural Geology 8, 923936.CrossRefGoogle Scholar
Searle, M.P., Pickering, K., Cooper, D., 1990. Restoration and evolution of the intermontane Indus molasse basin, Ladakh Himalaya, India. Tectonophysics 174, 301314.CrossRefGoogle Scholar
Seong, Y.B., Owen, L.A., Bishop, M.P., Bush, A., Clendon, P., Copland, L., Finkel, R.C., Kamp, U., Shroder, J.F., 2008. Rates of fluvial bedrock incision within an actively uplifting orogen: Central Karakoram Mountains, northern Pakistan. Geomorphology 97, 274286.CrossRefGoogle Scholar
Sharma, S., Bartarya, S.K., Marh, B.S., 2016a. Post-glacial landform evolution in the middle Satluj River valley, India: implications towards understanding the climate tectonic interactions. Journal of Earth System Science 125, 539558.Google Scholar
Sharma, S., Chand, P., Bisht, P., Shukla, A.D., Bartarya, S.K., Sundriyal, Y.P., Juyal, N., 2016b. Factors responsible for driving the glaciation in the Sarchu Plain, eastern Zanskar Himalaya, during the late Quaternary. Journal of Quaternary Science 31, 495511.CrossRefGoogle Scholar
Shi, Y., Yu, G., Liu, X., Li, B., Yao, T., 2001. Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 169, 6983.CrossRefGoogle Scholar
Shukla, U.K., 2009. Sedimentation model of gravel-dominated alluvial piedmont fan, Ganga Plain, India. International Journal of Earth Sciences 98, 443459.CrossRefGoogle Scholar
Sinclair, H.D., Jaffey, N., 2001. Sedimentology of the Indus Group, Ladakh, northern India: implications for the timing of initiation of the palaeo-Indus River. Journal of the Geological Society 158, 151162.CrossRefGoogle Scholar
Sinclair, H.D., Mudd, S.M., Dingle, E., Hobley, D.E.J., Robinson, R., Walcott, R., 2017. Squeezing river catchments through tectonics: shortening and erosion across the Indus Valley, NW Himalaya. Geological Society of America Bulletin 129, 203217.CrossRefGoogle Scholar
Singh, I.B., Sahni, A., Jain, A.K., Upadhyay, R., Parcha, S.K., Parmar, V., Agarwal, K.K., et al. 2015. Post-collision sedimentation in the Indus Basin (Ladakh, India): implications for the evolution of the northern margin of the Indian plate. Journal of the Palaeontological Society of India 60, 97146.Google Scholar
Singh, S., Jain, A.K., 2007. Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: geological evidences of paleoseismicity along active fault zone. Sedimentary Geology 196, 4757.CrossRefGoogle Scholar
Srivastava, P., Bhakuni, S.S., Luirei, K., Misra, D.K., 2009. Morpho-sedimentary records from the Brahmaputra River exit, NE Himalaya: climate-tectonic interplay during Late Pleistocene-Holocene. Journal of Quaternary Science 24, 175188.CrossRefGoogle Scholar
Srivastava, P., Brook, G.A., Marais, E., Morthekai, P., Singhvi, A.K., 2006. Depositional environment and OSL chronology of the Homeb silt deposits, Kuiseb River, Namibia. Quaternary Research 65, 478491.CrossRefGoogle Scholar
Srivastava, P., Misra, D.K., 2008. Morpho-sedimentary records of active tectonics at the Kameng River exit, NE Himalaya. Geomorphology 96, 187198.CrossRefGoogle Scholar
Srivastava, P., Ray, Y., Phartiyal, B., Sharma, A., 2013. Late Pleistocene-Holocene morphosedimentary architecture, Spiti River, arid higher Himalaya. International Journal of Earth Sciences 102, 19671984.CrossRefGoogle Scholar
Srivastava, P., Tripathi, J.K., Islam, R., Jaiswal, M.K., 2008. Fashion and phases of Late Pleistocene aggradation and incision in Alaknanda River, western Himalaya, India. Quaternary Research 70, 6880.CrossRefGoogle Scholar
Starkel, L., 2003. Climatically controlled terraces in uplifting mountain areas. Quaternary Science Reviews 22, 21892198.CrossRefGoogle Scholar
Suresh, N., Bagati, T.N., Kumar, R., Thakur, V.C., 2007. Evolution of Quaternary alluvial fans and terraces in the intramontane Pinjaur Dun, Sub‐Himalaya, NW India: interaction between tectonics and climate change. Sedimentology 54, 809833.CrossRefGoogle Scholar
Thakur, V.C., 1983. Palaeotectonic evolution of Indus-Tsangpo Suture Zone in Ladakh and southern Tibet. In: Thakur, V.C., Sharma, K.K. (Eds.), Geology of Indus Suture Zone of Ladakh. Wadia Institute of Himalayan Geology, Dehra Dun, India, pp. 195204.Google Scholar
Thakur, V.C., Misra, D.K., 1984. Tectonic framework of the Indus and Shyok suture zones in the eastern Ladakh, Northwest Himalaya. Tectonophysics 101, 207220.CrossRefGoogle Scholar
Thiede, R.C., Bookhagen, B., Arrowsmith, J.R., Sobel, E.R., Strecker, M.R., 2004. Climatic control on rapid exhumation along the Southern Himalayan Front. Earth and Planetary Science Letters 222, 791806.CrossRefGoogle Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.N., Beer, J., Synal, H.A., Cole-Dai, J., Bolzan, J.F., 1997. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science 276, 18211825.CrossRefGoogle Scholar
Troiani, F., Galve, J.P., Piacentini, D., Seta, M.D., Guerrero, J., 2014. Spatial analysis of stream length-gradient (SL) index for detecting hill slope processes: a case of the Gállego River headwaters (Central Pyrenees, Spain). Geomorphology 214, 183197.CrossRefGoogle Scholar
Van Der Beek, P., Melle, J.V., Guillot, S., Pêcher, A., Reiners, P.W., Nicolescu, S., Latif, M., 2009. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya. Nature Geoscience 2, 364368.CrossRefGoogle Scholar
Whipple, K.X., Hancock, G.S., Anderson, R.A., 2000. River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation. Geological Society of America Bulletin 112, 490503.2.0.CO;2>CrossRefGoogle Scholar
Whipple, K.X., Tucker, G.E., 1999. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth 104, 1766117674.CrossRefGoogle Scholar
Whipple, K.X., Tucker, G.E., 2002. Implications of sediment-flux dependent river incision models for landscape evolution. Journal of Geophysical Research: Solid Earth 107, ETG 3-1ETG 3-20.CrossRefGoogle Scholar
Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., Sheehan, D., 2006. Tectonics from topography: procedures, promise, and pitfalls. Geological Society of America, Special Papers 398, 5574.Google Scholar
Wu, F.Y., Clift, P.D., Yang, J.H., 2007. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics 26, TC2014. http://dx.doi.org/10.1029/2006TC002051.CrossRefGoogle Scholar
Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt, C., Bloemendal, J., Diekmann, B., et al. 2010. Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews 29, 11381155.CrossRefGoogle Scholar
Supplementary material: Image

Kumar and Srivastava supplementary material

Kumar and Srivastava supplementary material 1

Download Kumar and Srivastava supplementary material(Image)
Image 17.6 MB
Supplementary material: Image

Kumar and Srivastava supplementary material

Kumar and Srivastava supplementary material 2

Download Kumar and Srivastava supplementary material(Image)
Image 24 MB
Supplementary material: Image

Kumar and Srivastava supplementary material

Kumar and Srivastava supplementary material 3

Download Kumar and Srivastava supplementary material(Image)
Image 27.9 MB
Supplementary material: Image

Kumar and Srivastava supplementary material

Kumar and Srivastava supplementary material 4

Download Kumar and Srivastava supplementary material(Image)
Image 1.9 MB
Supplementary material: Image

Kumar and Srivastava supplementary material

Kumar and Srivastava supplementary material 5

Download Kumar and Srivastava supplementary material(Image)
Image 1.9 MB
Supplementary material: Image

Kumar and Srivastava supplementary material

Kumar and Srivastava supplementary material 6

Download Kumar and Srivastava supplementary material(Image)
Image 1.8 MB
Supplementary material: Image

Kumar and Srivastava supplementary material

Kumar and Srivastava supplementary material 7

Download Kumar and Srivastava supplementary material(Image)
Image 1.4 MB
Supplementary material: File

Kumar and Srivastava supplementary material

Kumar and Srivastava supplementary material 8

Download Kumar and Srivastava supplementary material(File)
File 30.7 KB