Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T13:24:46.597Z Has data issue: false hasContentIssue false

Rodent paleofaunas as indicators of climatic change in Europe during the last 125,000 years

Published online by Cambridge University Press:  20 January 2017

Manuel Hernández Fernández*
Affiliation:
Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
*
*Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain.E-mail addresses:[email protected]E-mail address:[email protected]

Abstract

This paper presents a quantitative reconstruction of the European late Pleistocene paleoclimate based on 72 rodent assemblages of five sequences from France, Germany and Bulgaria, covering the last interglacial–glacial cycle. They show a pattern of severe changes in temperature, with reduced precipitation during the coldest periods. A tentative correlation between the isotopic and palynological records and the paleotemperature changes is shown. These changes are consistent with variations in atmospheric circulation patterns in response to an expanding–retracting Fennoscandian ice-sheet. They can be attributed to the enhancement–weakening of the Scandinavian-Polar anticyclone and its associated dry winds, the south–north shifting of the North Atlantic Polar Front, and the varying supply of moist air from the Atlantic. Qualitative paleoenvironmental analysis shows broadleaved-deciduous forests in France and Bulgaria during most of the studied period. Taiga and tundra appeared in eastern France during the lower Würm. The German sequence indicates the presence of coniferous forests. These results are broadly consistent with other paleobiological records (mammalian, avian and insect faunas, isotopic record in dental tissue, palynology). The main discrepancies with the paleoclimate inferred from the palynological record are found during the coldest periods and are probably due to the interaction between vegetation, climate, and atmospheric CO2 levels.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M., Faure, H., Faure-Denard, L., McGlade, J.M., Woodward, F.I., (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711714.CrossRefGoogle Scholar
Allué Andrade, J.L., (1990). Atlas Fitoclimático de España. Monografías INIA 69, 1223.Google Scholar
Arléry, R., (1970). The climate of France, Belgium, The Netherlands and Luxembourg. Wallén, CC., Climates of Northern and Western Europe World Survey of Climatology vol. 5, Elsevier, Amsterdam.119158.Google Scholar
Barnola, J.M., Raynaud, D., Korotkevich, Y.S., Lorius, C., (1987). Vostok ice core provides 160,000-year record of atmospheric CO2 . Nature 329, 408414.CrossRefGoogle Scholar
Barron, E., Pollard, D., (2002). High-resolution climate simulations of Oxygen Isotope Stage 3 in Europe. Quaternary Research 58, 296309.CrossRefGoogle Scholar
Bennett, K.D., Willis, K.J., (2000). Effect of global atmospheric carbon dioxide on glacial–interglacial vegetation change. Global Ecology and Biogeography 9, 355361.CrossRefGoogle Scholar
Betts, R.A., Cox, P.M., Lee, S.E., Woodward, F.I., (1997). Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387, 796799.CrossRefGoogle Scholar
Broccoli, A.J., Manabe, S., (1987). The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dynamics 1, 8799.CrossRefGoogle Scholar
Brunet-Lecomte, P., Nadachowski, A., Chaline, J., (1992). Microtus (Terricola) grafi nov. sp. du Pléistocène Supérieur de la grotte de Bacho Kiro (Bulgarie). Geobios 25, 505509.CrossRefGoogle Scholar
Campy, M., Chaline, J., Vuillemey, M., (1989). La Baume de Gigny (Jura). Gallia Préhistoire vol. 27, CNRS, Paris.1263.(Supplement)Google Scholar
Carcaillet, C., Vernet, J.L., (2001). Comments on “The Full-Glacial forests of Central and Southeastern Europe” by Willis et al. Quaternary Research 55, 385387.CrossRefGoogle Scholar
Chaline, J., (1972). Les Rongeurs du Pléistocène moyen et supérieur de France (Systématique, Biostratigraphie, Paléoclimatologie).Cahiers de Paléontologie. CNRS, Paris.Google Scholar
Chaline, J., Brunet-Lecomte, P., Campy, M., (1995). The last glacial/interglacial record of rodent remains from the Gigny karst sequence in the French Jura used for paleoclimatic and palaeoecological reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 117, 229252.CrossRefGoogle Scholar
CLIMAP Project Members(1976). The Surface of the Ice-Age Earth. Science 191, 11311137.CrossRefGoogle Scholar
COHMAP Members(1988). Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 10431052.CrossRefGoogle Scholar
Cosgrove, B.A., Barron, E.J., Pollard, D., (2002). A simple interactive vegetation model coupled to the GENESIS GCM. Global and Planetary Change 32, 253278.CrossRefGoogle Scholar
Cowling, S.A., (1999). Simulated effects of low atmospheric CO2 on structure and composition of North America vegetation at the Last Glacial Maximum. Global Ecology and Biogeography 8, 8193.Google Scholar
Cowling, S.A., Sykes, M.T., (1999). Physiological significance of low atmospheric CO2 for plant–climate interactions. Quaternary Research 52, 237242.CrossRefGoogle Scholar
Crowley, T.J., North, G.R., (1991). Paleoclimatology.. Oxford University Press and Clarendon Press, Oxford.Google Scholar
Daams, R., van der Meulen, A.J., Peláez-Campomanes, P., Álvarez Sierra, M.A., (1999). Trends in rodent assemblages from the Aragonian (early–middle Miocene) of the Calatayud-Daroca Basin, Aragon, Spain. Agustí, J., Rook, L., Andrews, P., Hominid Evolution and Climatic Change in Europe The Evolution of Neogene Terrestrial Ecosystems in Europe vol. 1, Cambridge Univ. Press, Cambridge.127139.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvldberg, C.S., Steffensen, J.P., Svelnbjörnsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
de Beaulieu, J.L., Reille, M., (1984). A long Upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13, 111132.CrossRefGoogle Scholar
de Beaulieu, J.L., Reille, M., (1992). The last climatic cycle at la Grande Pile (Vosges, France): a new pollen profile. Quaternary Science Reviews 11, 431438.CrossRefGoogle Scholar
Farquhar, G.D., (1997). Carbon dioxide and vegetation. Science 278, 1411.CrossRefGoogle Scholar
FAUNMAP Working Group(1996). Spatial response of mammals to Late Quaternary environmental fluctuations. Science 272, 16011606.Google Scholar
Fauquette, S., Guiot, J., Menut, M., de Beaulieu, J.-L., Reille, M., Guenet, P., (1999). Vegetation and climate since the last interglacial in the Vienne area (France). Global and Planetary Change 20, 117.CrossRefGoogle Scholar
Florineth, D., Schluchter, C., (2000). Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quaternary Research 54, 295308.CrossRefGoogle Scholar
Guiot, J., (1990). Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 4969.CrossRefGoogle Scholar
Guiot, J., Pons, A., de Beaulieu, J.L., Reille, M., (1989). A 140,000-year continental climate reconstruction from two European pollen records. Nature 338, 309313.CrossRefGoogle Scholar
Guiot, J., de Beaulieu, J.L., Cheddadi, R., David, F., Ponel, P., Reille, M., (1993). The climate in Western Europe during the last glacial/interglacial cycle derived from pollen and insect remains. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 7393.CrossRefGoogle Scholar
Harrison, S.P., Prentice, I.C., Bartlein, P.J., (1992). Influence of insulation and glaciation on atmospheric circulation in the North Atlantic sector: implications of general circulation model experiments for the Late Quaternary climatology of Europe. Quaternary Science Reviews 11, 283299.CrossRefGoogle Scholar
Hernández Fernández, M., (2001). Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecology and Biogeography 10, 113128.Google Scholar
Hernández Fernández, M., Peláez-Campomanes, P., (2003). The bioclimatic model: a method of palaeoclimatic qualitative inference based on mammal associations. Global Ecology and Biogeography 12, 507517.CrossRefGoogle Scholar
Hernández Fernández, M., Peláez-Campomanes, P., (2005). Quantitative palaeoclimatic inference based on terrestrial mammal faunas. Global Ecology and Biogeography 14, 3956.CrossRefGoogle Scholar
Hernández Fernández, M., Vrba, E.S., in press. Plio-Pleistocene climatic change in the Turkana Basin (East Africa): evidence from large mammal faunas. Journal of Human Evolution..Google Scholar
Hernández Fernández, M., Salesa, M.J., Sánchez, I.M., Morales, J., (2003). Paleoecología del género Anchitherium von Meyer, 1834 (Equidae, Perissodactyla, Mammalia) en España:. evidencias a partir de la faunas de macromamíferos. Coloquios de Paleontología, Volumen Extraordinario 1, 253280.Google Scholar
Hernández Fernández, M., Alberdi, M.T., Azanza, B., Montoya, P., Morales, J., Nieto, M., Peláez-Campomanes, P., in press. Identification problems of arid environments in the Neogene-Quaternary mammal record of Spain.. Journal of Arid Environments.Google Scholar
Hír, J., (1993a). Allocricetus ehiki Schaub, 1930 (Rodentia, Mammalia) finds from Vilány 3 and Esztramos 3 (Hungary). Fragmenta Mineralogica et Palaeontologica 16, 6180.Google Scholar
Hír, J., (1993b). Cricetulus migratorius (Pallas, 1773) (Rodentia, Mammalia) population from the Toros Mountains (Turkey): with a special reference to the relation of Cricetulus and Allocricetus genera. Folia Historico Naturalia Musei Matraensis 18, 1734.Google Scholar
Hokr, Z., (1951). Methoda kvantitativniho stanoveni klimatuve ctvrtohorach podle ssavcich spolecenstv. Vestník Ústredního Ústavu Geologického 18, 209219.Google Scholar
Huntley, B., Alfano, M.J., Allen, J.R.M., Pollard, D., Tzedakis, P.C., Beaulieu, J.L., de Gruger, E., Watts, B., (2003). European vegetation during Marine Oxigen Isotope Stage-3. Quaternary Research 59, 195212.CrossRefGoogle Scholar
Jeannet, M., Cartonnet, M., (2000). La microfaune de la Chênelaz (Hostias, Ain). L'environnement et son influence sur la biométrie dentaire chez Arvicola terrestris (Rodentia, Mammalia). Revue de Paleobiologie 19, 475492.Google Scholar
Kälin, D., (1999). Tribe cricetini. Rössner, G.E., y Heissig, K., The Miocene Land Mammals of Europe Verlag Dr. Friedrich Pfeil, München.367375.Google Scholar
Kershaw, A.P., Whitlock, C., (2000). Palaeoecological records of the last glacial–interglacial cycle: patterns and causes of change. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 15.CrossRefGoogle Scholar
Koby, F.E., Spahni, J.C., (1956). Découverte dans le Quaternaire espagnol d'un petit hamster: Allocricetus bursae Schaub. Eclogae Geologicae Helvetiae 49, 543545.Google Scholar
Köppen, W., (1931). Grundiß der klimakunde. De Gruyter, Berlin.Google Scholar
Kowalski, K., Nadachowski, A., 1982, Rodentia. In: Kozlowski, J.K. (Ed.), (1982). Excavation in the Bacho Kiro Cave (Bulgaria). Final report.. Panstwowe Wydawnictwo Naukowe, Warszawa., pp. 4551.Google Scholar
Leroux, M., (1993). The Mobile Polar High: a new concept explaining present mechanisms of meridional air-mass and energy exchanges and global propagation of paleoclimatic changes. Global and Planetary Change 7, 6993.CrossRefGoogle Scholar
Lloyd, A.H., Armbruster, W.S., Edwards, M.E., (1994). Ecology of a steppe-tundra gradient in interior Alaska. Journal of Vegetation Science 5, 897912.CrossRefGoogle Scholar
Lundqvist, J., Saarnisto, M., (1995). Summary of project IGPC-253. Quaternary International 28, 918.CrossRefGoogle Scholar
Meteorological Office(1972). Tables of Temperature, Relative Humidity, Precipitation and Sunshine for the World: Part III. Europe and the Azores Meteorological Office. Her Majesty's Stationery Office, London.Google Scholar
Meyer, H.-H., Kottmeier, C., (1989). Die atmosphärische Zirkulation in Europa im Hochglazial der Weichsel-Eiszeit-abgeleitet von Paläowind-Indikatoren und modellsimulationen. Eiszeitalter und Gegenwart 39, 1018.Google Scholar
Montuire, S., Michaux, J., Legendre, S., Aguilar, J.-P., (1997). Rodents and climate: 1. A model for estimating past temperatures using arvicolids (Mammalia: Rodentia). Palaeogeography, Palaeoclimatology, Palaeoecology 128, 187206.CrossRefGoogle Scholar
Nadachowski, A., (1984). Morphometric variability of dentition of the Late Pleistocene voles (Arvicolidae, Rodentia) from Bacho Kiro Cave (Bulgaria). Acta Zoologica Cracoviensia 27, 149176.Google Scholar
Nadachowski, A., (1991). Systematics, geographic variation, and evolution of snow voles (Chionomys) based on dental characters. Acta Theriologica 36, 145.CrossRefGoogle Scholar
Navarro, N., Lécuyer, C., Montuire, S., Langlois, C., Martineau, F., (2004). Oxygen isotope compositions of phosphate from arvicoline teeth and Quaternary climatic changes, Gigny, French Jura. Quaternary Research 62, 172182.CrossRefGoogle Scholar
Neftel, A., Oeschger, H., Staffelbach, T., Stauffer, B., (1988). CO2 record in the Byrd ice core 50,000–5,000 years B.P. Nature 331, 609611.CrossRefGoogle Scholar
NGICP Members(2004). High-resolution record of Northern hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Nieto, M., Rodríguez, J., (2003). Inferencia paleoecológica en mamíferos cenozoicos: limitaciones metodológicas. Coloquios de Paleontología, Volumen Extraordinario 1, 459474.Google Scholar
Nord Andreasen, T., (1997). Taxonomic status of Desmana (Insectivora) and Spermophilus (Rodentia) specimens from Danish Late Weichselian deposits. Acta Zoologica Cracoviensia 40, 229236.Google Scholar
Overpeck, J.T., Webb, R.S., Webb, T. III, (1992). Mapping eastern North American vegetation change of the past 18 ka: No-analogs and the future. Geology 20, 10711074.2.3.CO;2>CrossRefGoogle Scholar
Popov, V.V., Gerasimov, S., Marinska, M., (1994). Multivariate palaeoecological analysis of a late Quaternary small mammal succession from North Bulgaria. Historical Biology 8, 261274.CrossRefGoogle Scholar
Ponel, P., (1995). Rissian, Eemian and Würmian Coleoptera assemblages from La Grande Pile (Vosges, France). Palaeogeography, Palaeoclimatology, Palaeoecology 114, 141.CrossRefGoogle Scholar
Prentice, I.C., Webb, T. III, (1998). BIOME 6000: reconstructing global mid-Holocene vegetation—Patterns from palaeoecological records. Journal of Biogeography 25, 9971005.CrossRefGoogle Scholar
Prentice, I.C., Guiot, J., Harrison, S.P., (1992). Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature 360, 658660.CrossRefGoogle Scholar
Prentice, I.C., Sykes, M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O., Bartlein, P.J., (1993). Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecology and Biogeography Letters 3, 6776.CrossRefGoogle Scholar
Prentice, I.C., Jolly, D., (2000). BIOME 6000 participants Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. Journal of Biogeography 27, 507519.CrossRefGoogle Scholar
PRISM Project Members, (1995). Middle Pliocene Palenvironments of the Northern Hemisphere. Vrba, E.S., Denton, G.H., Partridge, T.C., Burckle, L.H., (1995). PRISM Project Members Paleoclimate and Evolution: with Emphasis on Human Origins. Yale Univ. Press, New Haven.242248.Google Scholar
Ray, N., Adams, J.M., (2001). A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeology 11, 144.Google Scholar
Rivas Martínez, S., (1994). Clasificación bioclimática de la Tierra. Folia Botanica Matritensis 13, 127.Google Scholar
Rivas Martínez, S., Sánchez Mata, D., Costa, M., (1999). North American boreal and western temperate forest vegetation. Syntaxonomical synopsis of the potential natural plant communities of North America II. Itinera Geobotánica 12, 5316.Google Scholar
Schweizer, M., (2002). Grotte de la Chênelaz (Hostias, Ain, France): Les grands Mammifères de la couche 6b. Revue de Paleobiologie 21, 803818.Google Scholar
Spaulding, W.G., (1991). Pluvial climatic episodes in North America and North Africa: types and correlation with global climate. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 217227.CrossRefGoogle Scholar
Strahler, A.N., Strahler, A.H., (1987). Modern Physical Geography. John Wiley and Sons, New York.Google Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W., Ingolfsson, O., Jakobsson, M., Kjaer, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lysa, A., Mangerud, J., Matiouchkov, A., Murray, A., Moller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M.J., Spielhagen, R.F., Stein, R., (2004). Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 12291271.CrossRefGoogle Scholar
van Andel, T.H., (2002). The climate and landscape of the middle part of the Weichselian glaciation in Europe: the Stage 3 Project. Quaternary Research 57, 28.CrossRefGoogle Scholar
van de Weerd, A., Daams, R., (1978). Quantitative composition of rodent faunas in the Spanish Neogene y paleoecological implications. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Serie B 81, 448473.Google Scholar
von Koenigswald, W., (1978). Die Säugetierfauna des Mittel-Würms aus der Kemathenhöhle im Altmühltal (Bayern). Mitteilungen Bayerischen Staatssammlung für Paläontologie und histor Geologie 18, 117130.Google Scholar
Walter, H., (1970). Vegetationszonen und Klima. Eugen Ulmer, Stuttgart.Google Scholar
Willis, K.J., van Andel, T.H., (2004). Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews 23, 23692387.CrossRefGoogle Scholar
Willis, K.J., Rudner, E., Sümegi, P., (2000). The Full-Glacial forests of Central and Southeastern Europe. Quaternary Research 53, 203213.CrossRefGoogle Scholar
Willis, K.J., Rudner, E., Sümegi, P., (2001). Reply to Carcaillet and Vernet. Quaternary Research 55, 388389.CrossRefGoogle Scholar
Woillard, G., (1979). The last interglacial–glacial cycle at Grande Pile in Northeastern France. Bulletin du Societé Belge de Géologie 88, 5169.Google Scholar
Woillard, G.M., Mook, W.G., (1982). Carbon-14 dates at Grande Pile: correlations of land and sea chronologies. Science 215, 159161.CrossRefGoogle ScholarPubMed
Woodcock, D.W., Wells, P.V., (1990). Full-glacial summer temperatures in eastern North America as inferred from Wisconsinan vegetational zonation. Palaeogeography, Palaeoclimatology, Palaeoecology 79, 305312.CrossRefGoogle Scholar
Yurtsev, B.A., (1982). Relics of the xerophyte vegetation of Beringia in northeastern Asia. Hopkins, D.M., Matthews, J.V. Jr., Schweger, C.E., Young, S.B., Paleoecology of Beringia Academic Press, New York.179194.Google Scholar
Zimov, S.A., Churynin, V.I., Oreshko, A.P., Chapin, F.S. III, (1995). Reynolds, J.F., Chapin, M.C., Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene The American Naturalist 146, 765794.Google Scholar