Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T20:32:45.513Z Has data issue: false hasContentIssue false

The Rocourt Tephra, a Widespread 90–74 ka stratigraphic marker in Belgium

Published online by Cambridge University Press:  20 January 2017

André Pouclet*
Affiliation:
1383 rue de la Source, 45160 Olivet, France
Etienne Juvigné
Affiliation:
University of Liège, Sart-Tilman, B-12A, 4000 Liège, Belgium
Stéphane Pirson
Affiliation:
Royal Belgian Institute of Natural Sciences, 29 rue Vautier, B-1000 Bruxelles, Belgium
*
*Corresponding author. E-mail address:[email protected] (A. Pouclet).

Abstract

A new study of the stratigraphy and composition of the Rocourt Tephra is performed at five sites in Belgium and brackets the age of the tephra between 90.3 and 74 ka. The volcanic glass grains have a typical shape of phreatomagmatic eruption products. A large set of tephra minerals were analyzed, namely clinopyroxene, orthopyroxene, amphibole, and Cr-spinel. The compositions of these minerals have been compared with the lava xenocrysts, megacrysts, and phenocrysts of the proximate Eifel volcanic province for which the origin has been determined (mantle xenoliths, high-pressure cumulates, and middle- to low-pressure magmatic phases). This allowed us to determine the likely origin of the tephra minerals. The Rocourt Tephra source could be a West Eifel volcano that was fed by a deep-seated magma batch rich in high- to middle-pressure minerals.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, K.-l, Kushiro, I., (1968). Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel.. Contributions to Mineralogy and Petrology 18, 326337.Google Scholar
Arai, S., (1992). Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry.. Mineralogical Magazine 56, 173184.Google Scholar
Becker, H.J., (1977). Pyroxenites and hornblendites from the maar-type volcanoes of theWesteifel, Federal Republic of Germany.. Contributions to Mineralogy and Petrology 65, 4552.Google Scholar
Binns, R.A., Duggan, M.B., Wilkinson, J.F.G., (1970). High pressure megacrysts in alkaline lavas from northeastern New South Wales.. American Journal of Science. 269, 132168.Google Scholar
Bogaard, v.d.P., (1995). 40Ar/39Ar ages of sanidine phenocrysts from Laacher See Tephra (12,900yr BP): chronostratigraphic and petrological significance.. Earth and Planetary Science Letters 133, 163174.Google Scholar
Bogaard, v.d.P., Schmincke, H.-U., (1985). Laacher See tephra: a widespread isochronous late Quaternary Tephra layer in central and northern Europe.. Geological Society of America Bulletin 96, 15541571.2.0.CO;2>CrossRefGoogle Scholar
Brey, G.P., Köhler, T., (1990). Geothermobarometry in four-phase lherzolites: II. New thermobarometers, and practical assessment of existing thermobarometers.. Journal of Petrology 31, 13531378.Google Scholar
Bringmans, P.M.M.A., Vermeersch, P.M., Gullentops, F., Groenendijk, A.J., Meijs, E., De Warrimont, J.-P., Cordy, J.-M., (2003). Preliminary excavation report on the middle Palaeolithic valley settlements at Veldwezelt-Hezerwater (prov. of Limburg).. Flemish Heritage Institute, Bruxelles, Archeologie in Vlaanderen VII, 930.Google Scholar
Büchel, G., Lorenz, V., Schmincke, H.-U., Zimanowski, B., (1986). Quartäre vulkanfelder des Eifel.. Fortschritt der Mineralogie 64, 97141.Google Scholar
Bultitude, R.J., Green, D.H., (1968). Experimental study at high pressures on the origin of olivine nephelinite and olivine melilite nephelinite magmas.. Earth and Planetary Science Letters 3, 325337.Google Scholar
Clark, S.P. Jr., Schairer, J.F., De Neufville, J., (1962). Phases relations in the system CaMgSi2O6–CaAI2SiO6–SiO2 at low and high pressure.. Carnegie Institution Washington Year Book, 61, 5968.Google Scholar
Davies, S.M., Hoek, W.Z., Bohncke, S.J.P., Lowe, J.J., O'Donnell, S.P., Turney, C.S.M., (2005). Detection of Lateglacial distal tephra layers in the Netherlands.. Boreas 34, 123135.Google Scholar
Dewez, M., Collcutt, S.N., Cordy, J.-M., Gilot, E., Groessens-Van Dyck, M.-C., Heim, J., Kozlowski, S., Sachse-Kozlowska, E., Lacroix, D., Simonet, P., (1993). Recherches à la grotte Walou à Trooz (province de Liège, Belgique), premier rapport de fouille Société wallonne de palethnologie.. Liège, Mémoire 7, 81 p.Google Scholar
Draily, C., (1998). Campagnes de fouilles 1996–1998 à la grotte Walou à Trooz.. Notae Praehistoricae 18, 2532.Google Scholar
Duda, A., Schmincke, H.-U., (1978). Quaternary basanites, melilite nephelinites and tephrites from the Laacher See area (Germany).. Neues Jahrbuch für Mineralogie Abhandlungen 132, 133.Google Scholar
Duda, A., Schmincke, H.-U., (1985). Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FGR).. Contributions to Mineralogy and Petrology 91, 340353.Google Scholar
Fedele, F.G., Giaccio, B., Isaia, R., Orsi, G., (2003). The Campanian ignimbrite eruption, Heinrich Event 4, and Palaeolithic change in Europe: a high-resolution investigation.. Robock, A., Oppenheimer, C. Volcanism and Earth's Atmosphere. American Geophysical Union Geophysical Monograph vol. 139, 301325.Google Scholar
Frish, T., Wright, J.B., (1971). Chemical composition of high-pressure megacrysts from Nigerian Cenozoic lavas.. Neues Jahrbuch für Mineralogie Monatshefte 7, 289304.Google Scholar
Gewelt, M., Juvigné, E., (1986). Les « téphra de Remouchamps », un nouveau marqueur stratigraphique dans le Pléistocène supérieur daté par 230Th/234U.. Annales de la Société géologique de Belgique 109, 489497.Google Scholar
Ghent, E.D., Coleman, R.G., Hadley, D.G., (1980). Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Saudi Arabia.. American Journal of Ssience 280A, 499527.Google Scholar
Green, D.H., Ringwood, A.E., (1967). The genesis of basaltic magmas.. Contributions to Mineralogy and Petrology 15, 103190.Google Scholar
Green, D.H., Hibberson, W.O., (1970). Experimental duplication of conditions of precipitation of high pressure phenocrysts in a basaltic magma.. Physics Earth Planetary Interior 3, 247254.Google Scholar
Gullentops, F., (1954). Contribution à la chronologie du Pléistocène et des formes du relief en Belgique.. Institut géologique de l'Université de Louvain, Belgique, Mémoire 18, 125252.Google Scholar
Haesaerts, P., Mestdagh, H., (2000). Pedosedimentary evolution of the last interglacial and early glacial sequence in the European loess belt from Belgium to central Russia.. Geologie en Mijnbouw 79, 313324.Google Scholar
Haesaerts, P., Juvigné, E., Kuyl, O., Mücher, H., Roebroeks, W., (1981). Compte rendu de l'excursion du 13 juin 1981, en Hesbaye et au Limbourg néerlandais, consacrée à la chronostratigraphie des loess du Pléistocène supérieur.. Annales de la Société géologique de Belgique 104, 223240.Google Scholar
Haesaerts, P., Mestdagh, H., Bosquet, D., (1999). The sequence of Remicourt (Hesbaye, Belgium): new insights on the pedo- and chronostratigraphy of the Rocourt Soil.. Geologica Belgica 2, 527.Google Scholar
Harms, E., Gardner, J.E., Schmincke, H.-U., (2004). Phase equilibria of the Lower Laacher See Tephra (East Eifel, Germany): constraints on pre-eruptive storage conditions of a phonolitic magma reservoir.. Journal of Volcanology and Geothermal Research 134, 135148.Google Scholar
Houghton, B.F., Schmincke, H.-U., (1989). Rothenberg scoria cone, East Eifel: a complex Strombolian and phreato-magmatic volcano.. Bulletin of Volcanology 52, 2848.Google Scholar
Irving, A.J., (1974). Megacrysts from the newer basalts and other basaltic rocks of Southeastern Australia.. Geological Society of America Bulletin 85, 15031514.Google Scholar
Irving, A.J., (1980). Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle.. American Journal of Science 280A, 389426.Google Scholar
Ito, K., Kennedy, G.C., (1968). Melting and phase relations in the plane tholeiite–lherzolite–nepheline basanite to 40kilobars with geological interpretations.. Contributions to Mineralogy and Petrology 19, 177211.Google Scholar
Jaques, A.L., Green, D.H., (1980). Anhydrous melting of peridotite at 0–15Kb pressure and the genesis of tholeiitic basalts.. Contributions to Mineralogy and Petrology 73, 287310.Google Scholar
Juvigné, E., (1974). Découverte de minéraux volcaniques à Kesselt (Limbourg).. Annales de la Société géologique de Belgique 7, 287288.Google Scholar
Juvigné, E., (1977a). La zone de dispersion des poussières émises par une des dernières éruptions du volcan du Laacher See (Eifel).. Zeitschrift für Geomorphologie 21, 323342.Google Scholar
Juvigné, E., (1977b). Zone de dispersion et âge des poussières volcaniques du tuf de Rocourt.. Annales de la Société géologique de Belgique 100, 1322.Google Scholar
Juvigné, E., (1985). Données nouvelles sur l'âge de la capture de la Warche à Bévercé.. Bulletin de la Société géographique de Liège 21, 311.Google Scholar
Juvigné, E., (1990). About some widespread Late Pleistocene tephra horizons in Middle Europe.. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 4, 215232.Google Scholar
Juvigné, E., (1993). Contribution à la téphrostratigraphie du Quaternaire et son application à la géomorphologie.. Mémoires pour servir à l'Explication des Cartes Géologiques et Minières de la Belgique, Bruxelles vol. 36, 66 pp.Google Scholar
Juvigné, E., (1999). Téphrostratigraphie du Quaternaire en Belgique.. Geologica Belgica 2, 7387.Google Scholar
Juvigné, E., Semmel, A., (1981). Un tuf volcanique semblable à l'Eltviller Tuff dans les loess de Hesbaye (Belgique) et du Limbourg néerlandais.. Eiszeitalter und Gegenwart 31, 8390.Google Scholar
Juvigné, E., Mörner, N.A., (1984). A volcanic ash-fall at the Early-Mid Weichselian–Würmian transition in the peat-bog of Grande Pile (Vosges, France).. Eiszeitalter und Gegenwart 34, 15.Google Scholar
Juvigné, E., Wintle, A.G., (1988). A new chronostratigraphy of the Late Weischelian loess units in Middle Europe based on thermoluminescence dating.. Eiszeitalter und Gegenwart 38, 94105.Google Scholar
Juvigné, E., Gabris, G., Horvath, E., (1991). La Téphra de Bag: une retombée volcanique à large dispersion dans le loess pléistocène d'Europe Centrale.. Eiszeitalter und Gegenwart 41, 107118.Google Scholar
Juvigné, E., Haesaerts, P., Mestdagh, H., Pissart, A., Balescu, S., (1996). Révision du stratotype loessique de Kesselt (Limbourg, Belgique) Comptes Rendus de l'Académie des Sciences de Paris 321, série IIa.. 801807.Google Scholar
Leterrier, J., Maury, R.C., Thonon, P., Girard, D., Marchal, M., (1982). Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series.. Earth and Planetary Science Letters 59, 139154.CrossRefGoogle Scholar
Leake, B.E., and the members of the Subcommittee on amphiboles of the International Mineralogical Association on new minerals and mineral names 1997.. Nomenclature of amphiboles. European Journal of Mineralogy 9, 623651.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., Shackleton, N.J., (1987). Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300,000-year chronostratigraphy.. Quaternary Research 27, 129.CrossRefGoogle Scholar
Meijs, E., Mücher, H., Ouwerkerk, G., Romein, A., Stoltenberg, H., (1983). Evidence of the presence of the Eltville Tuff Layer in Dutch and Belgian Limbourg and the consequences for the loess stratigraphy.. Eiszeitalter und Gegenwart 33, 5978.Google Scholar
Mertes, H., (1983). Aufbau und genese des Westeifeler Vulkanfeldes.. Bochumer geologische und geotechnische Arbeiten 9, 415 S.Google Scholar
Mertes, H., Schmincke, H.-U., (1985). Mafic potassic lavas of the Quaternary West Eifel volcanic field, I. Major and trace elements.. Contributions to Mineralogy and Petrology 89, 330345.Google Scholar
Miallier, D., Michon, L., Evin, J., Pilleyre, T., Sanzelle, S., Vernet, G., (2004). Volcans de la chaîne des Puys (Massif central, France): point sur la chronologie Vasset-Kilian-Pariou-Chopine.. Comptes Rendus Geosciences vol. 336, Paris, 13451353.CrossRefGoogle Scholar
Morimoto, N., (1988). Nomenclature of pyroxenes.. Bulletin de Mineralogie 111, 535550.Google Scholar
Mortens, L., Rossi, P.L., Bondi, M., Brunfelt, A.O., (1980). High-pressure megacrysts in basaltic lavas from Djanet Oasis, Eastern Hoggar, Algerian Sahara.. Salem, M.J., Busrewil, M.T. The Geology of Libya Academic Press Inc., London.10651075.Google Scholar
Nisbet, E.G., Pearce, J.A., (1977). Clinopyroxene composition in mafic lavas from different tectonic settings.. Contributions to Mineralogy and Petrology 63, 149160.CrossRefGoogle Scholar
Pirson, S., Draily, C., Court-Picon, M., Damblon, F., Haesaerts, P., (2004). La nouvelle séquence stratigraphique de la grotte Walou (Belgique).. Notae Praehistoricae 24, 3145.Google Scholar
Pirson, S., Haesaerts, P., Court-Picon, M., Damblon, F., Toussaint, M., Debenham, N.C., Draily, C., (2006). Belgian cave entrance and rock-shelter sequences as palaeoenvironmental data recorders: the example of Walou cave.. Geologica Belgica 9, 275286.Google Scholar
Pouclet, A., Juvigné, E., (1993). La Téphra de Rocourt en Belgique: recherche de son origine d'après la composition des pyroxènes.. Annales de la Société géologique de Belgique 116, 137145.Google Scholar
Pouclet, A., Horvath, E., Gabris, G., Juvigné, E., (1999). The Bag Tephra, a widespread tephrochronological marker in Middle Europe: chemical and mineralogical investigations.. Bulletin of Volcanology 60, 265272.Google Scholar
Pyle, D.M., Ricketts, G.D., Margari, V., van Andel, T.H., Sinitsyn, A.A., Praslov, N.D., Lisitsyn, S., (2006). Wide dispersal and deposition of distal tephra during the Pleistocene Campanian Ignimbrite/Y5 eruption, Italy.. Quaternary Science Reviews 25, 27132728.Google Scholar
Rohdenburg, H., Semmel, A., (1971). Bemerkungen zur stratigraphie des Würm-Lösses im westlichen Mitteleuropa.. Notizblatt Hessessischen Landes-Amt Bodenforsch 99, 246252.Google Scholar
Sachtleben, Th., Seck, H.A., (1981). Chemical control of Al-solubility in orthopyroxene and its implications on pyroxene geothermometry.. Contributions to Mineralogy and Petrology 78, 157165.CrossRefGoogle Scholar
Shaw, C.S.J., (2004). The temporal evolution of three magmatic systems in the West Eifel volcanic field, Germany.. Journal of Volcanology and Geothermal Research 131, 213240.Google Scholar
Shaw, C.J.S., Eyzaguirre, J., (2000). Origin of megacrysts in the alkaline lavas of the West Eifel volcanic field, Germany.. Lithos 50, 7595.CrossRefGoogle Scholar
Stosch, H.-G., Seck, H.A., (1980). Geochemistry and mineralogy of two spinel peridotite suites from Dreiser Weiher, West Germany.. Geochimica et Cosmochimica Acta 44, 457470.Google Scholar
Stosch, H.-G., Lugmair, G.W., (1986). Trace element and Sr and Nd isotope geochemistry of peridotite xenoliths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere.. Earth and Planetary Science Letters 80, 281298.Google Scholar
Tazaki, K., (1971). Ultramafic nodule and megacryst pyroxene in alkaline basalt from Kibi Plateau, Southwest. Japan.. Journal of the Geological Society of Japan 77, 127136.Google Scholar
Vandenberghe, J., Huijzer, B.S., Mücher, H., Laan, W., (1998). Short climatic oscillations in a western European loess sequence (Kesselt, Belgium).. Journal of Quaternary Science 13, 471485.Google Scholar
Wass, S.Y., (1980). Geochemistry and origin of xenolith-bearing and related alkali basaltic rocks from the Southern Highlands, New South Wales, Australia.. American Journal of Science 280A, 639666.Google Scholar
Wells, P.R.A., (1977). Pyroxene thermometry in simple and complex systems.. Contributions to Mineralogy and Petrology 62, 129139.CrossRefGoogle Scholar
Witt, G., Seck, H.A., (1987). Temperature history of sheared mantle xenoliths from the West Eifel, West Germany: evidence for mantle diapirism beneath the Rhenish Massif.. Journal of Petrology 28, 475493.Google Scholar
Witt-Eickschen, G., (1993). Upper mantle xenoliths from alkali basalts of the Vogelsberg, Germany: implications for mantle upwelling and metasomatism.. European Journal of Mineralogy 5, 361376.Google Scholar
Witt-Eickschen, G., Kramm, U., (1998). Evidence fort he multiple stage evolution of the subcontinental lithospheric mantle beneath the Eifel (Germany) from pyroxenite and composite pyroxenite/peridotite xenoliths.. Contributions to Mineralogy and Petrology 131, 258272.CrossRefGoogle Scholar
Witt-Eickschen, G., Kaminsky, W., Kramm, U., Harte, B., (1998). The nature of young vein metasomatism in the lithosphere of the West Eifel (Germany): geochemical and isotopic constraints from composite mantle xenoliths from the Meerfelder Maar.. Journal of Petrology 39, 155185.Google Scholar
Woillard, G.M., Mook, W., (1982). Carbon-14 dates at Grande Pile: correlation of land and sea chronologies.. Science 215, 159161.CrossRefGoogle ScholarPubMed
Wörner, G., Schmincke, H.-U., (1984). Mineralogical and chemical zonation of the Laacher See tephra sequence (East Eifel, W.. Germany). Journal of Petrology 25, 805835.CrossRefGoogle Scholar
Wulf, S., Kraml, M., Kuhn, T., Scharz, M., Inthorn, M., Keller, J., Kuscu, I., Halbach, P., (2002). Marine tephra from the Cape Riva eruption (22 ka) of Santorini in the Sea of Marmara.. Marine Geology 183, 131141.Google Scholar