Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-29T14:03:41.468Z Has data issue: false hasContentIssue false

The relevance of biotic processes on modern tufa deposits, with an example from the Bonito region, Central-West Brazil

Published online by Cambridge University Press:  21 October 2024

Jéssica Thaís Ferreira Oste*
Affiliation:
Laboratory of Minerals and Rocks Analysis (LAMIR), Federal University of Paraná, Curitiba, PR, Brazil
Almério Barros França
Affiliation:
Laboratory of Minerals and Rocks Analysis (LAMIR), Federal University of Paraná, Curitiba, PR, Brazil
Leonardo Fadel Cury
Affiliation:
Laboratory of Minerals and Rocks Analysis (LAMIR), Federal University of Paraná, Curitiba, PR, Brazil
Anelize Manuela Bahniuk
Affiliation:
Laboratory of Minerals and Rocks Analysis (LAMIR), Federal University of Paraná, Curitiba, PR, Brazil
*
Corresponding author: Jéssica Thaís Ferreira Oste; Email: [email protected]

Abstract

Tufas are freshwater carbonate rocks that form in continental environments through a combination of physical, chemical, and biological processes. This study investigates the role of microorganisms in the precipitation of Quaternary tufa deposits in the Serra da Bodoquena Formation, in the Bonito region. Two sites along the Mimoso River, named Taíka and Mimosa, characterized by the pool–barrage–cascade depositional subenvironment, were selected for this study. Four distinct facies were identified: stromatolitic boundstones, phytoherm boundstones of algae, phytoherm boundstones of bryophytes, and phytoclastic rudstones. These facies were observed in diverse hydrological settings, including fast-flowing waters, such as waterfalls and cascades, as well as slow-flowing areas, such as pools and dams. The δ18O depletion indicated a meteoric origin for the fluid involved in carbonate precipitation. The low δ13C values were attributed to photosynthetic processes and the contribution of light carbon-enriched groundwater. The presence of Oocardium stratum and calcified organic mucilage from extracellular polymeric substance (EPS) corroborates the significant role of microorganisms in tufa formation, particularly in stromatolitic boundstones and phytoherm boundstones of algae. Rapid CO2 degassing significantly contributes to mineralization in fast-flowing waters. Micro-CT results offer detailed insights into the relationship between mechanical processes and biological influences in shaping porosity characteristics. The findings of this study significantly enhance our understanding of the role of microorganisms in tufa formation, highlighting the complex interplay between biotic and abiotic processes in the development of different tufa facies. Moreover, the insights gained from this study provide valuable implications for interpreting tufa deposits worldwide.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almeida, F.F.M., 1965. Geologia da Serra da Bodoquena (Mato Grosso). DNPM/DGM Boletim 219, 96 pp.Google Scholar
Alvarenga, C.J.S., Trompette, R., 1993. Evolução tectônica Brasiliana da Faixa Paraguai: a estruturação da região de Cuiabá. Revista Brasileira de Geociências 23, 1830.CrossRefGoogle Scholar
Andrews, J.E., 2006. Paleoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews 75, 85104.CrossRefGoogle Scholar
Andrews, J.E., Brasier, A.T., 2005. Seasonal records of climatic change in annually laminated tufas: short review and future prospects. Journal of Quaternary Science 20, 411421.CrossRefGoogle Scholar
Andrews, J.E., Riding, R, Dennis, P.F., 1997. The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 129, 171189.CrossRefGoogle Scholar
Andrews, J.E., Pedley, H.M., Dennis, P.F., 2000. Paleoenvironmental records in Holocene Spanish tufas: a stable isotope approach in search of reliable climatic archives. Sedimentology 47, 961978.CrossRefGoogle Scholar
Arenas, C., Jones, B., 2017. Temporal and environmental significance of microbial lamination: Insights from Recent fluvial stromatolites in the River Piedra, Spain. Sedimentology 64, 15971629.CrossRefGoogle Scholar
Arenas, C., Cabrera, L., Ramos, E., 2007. Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island (Spain). Sedimentary Geology 197, 127.CrossRefGoogle Scholar
Arenas, C., Osácar, C., Sancho, C., Vázquez-Urbez, M., Auqué, L., Pardo, G., 2010. Seasonal record from recent fluvial tufa deposits (Monasterio de Piedra, NE Spain): sedimentological and stable isotope data. In: Yoshida, M., Windley, B.F., Dasgupta, S. (Eds.), Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society, London, Special Publications 336, p. 119142.Google Scholar
Arenas, C., Vázquez-Urbez, M., Auqué, L., Sancho, C., Osácar, C., Pardo, G., 2014a. Intrinsic and extrinsic controls of spatial and temporal variations in modern fluvial tufa sedimentation: a thirteen-year record from a semi-arid environment. Sedimentology 61, 90132.CrossRefGoogle Scholar
Arenas, C., Vázquez-Urbez, M., Pardo, G., Sancho, C., 2014b. Sedimentology and depositional architecture of tufas deposited in stepped fluvial systems of changing slope: Lessons from the Quaternary Añamaza valley (Iberian Range, Spain). Sedimentology 61, 133171.CrossRefGoogle Scholar
Arenas, C., Piñuela, L., García-Ramos, J.C., 2015. Climatic and tectonic controls on carbonate deposition in syn-rift siliciclastic fluvial systems: a case of microbialites and associated facies in the Late Jurassic. Sedimentology 62, 11491183.CrossRefGoogle Scholar
Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G., Sancho-Marcén, C., 2010. Fluvial and associated carbonate deposits. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Carbonates in Continental Settings: Facies, Environments and Processes. Developments in Sedimentology 61, 133175.CrossRefGoogle Scholar
Arp, G., Reimer, A., Reitner, J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292, 17011704.CrossRefGoogle ScholarPubMed
Arp, G., Bissett, A., Brinkmann, N., Cousin, S., De Beer, D., Friedl, T., Mohr, K.I., et al., 2010. Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. In: Pedley, H.M., Rogerson, M. (Eds.), Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society, London, Special Publications 336, 83118.Google Scholar
Berrendero, E., Arenas, C., Mateo, P., Jones, B., 2016. Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: example from the Monasterio de Piedra Natural Park (Spain). Sedimentary Geology 337, 1228.CrossRefGoogle Scholar
Boggiani, P.C., Fairchild, T.R., Coimbra, A.M., 1993. O Grupo Corumbá (Neoproterozóico–Cambriano) na região central da Serra da Bodoquena (Faixa Paraguai), Mato Grosso do Sul. Revista Brasileira de Geociências 23, 301305.CrossRefGoogle Scholar
Boggiani, P.C., Coimbra, A.M., Gesicki, A.L.D., Sial, A.N., Ferreira, V.P., Ribeiro, F.B., Flexor, J.M., 2002. Tufas Calcárias da Serra da Bodoquena, MS. In: Schobbenhaus, C., Campos, D.A., Queiroz, E.T., Winge, M, Berbert-Born, M.L.C. (Eds.) Sítios Geológicos e Paleontológicos do Brasil. DNPM, Brasília, pp. 249259.Google Scholar
Boggiani, P.C., Alvarenga, C.J.S., 2004. Faixa Paraguai. In: Mantesso-Neto, V., Bartorelli, A., Carneiro, A.D.R., Brito-Neves, B.B. (Eds.) Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. Beca Editora, São Paulo, pp. 113121.Google Scholar
Campanha, G.A.C., Sallun Filho, W., Zuquim, M.P.S., 2011. A Faixa de Dobramento Paraguai na Serra da Bodoquena e Depressão do Rio Miranda, Mato Grosso do Sul. Revista do Instituto de Geociências – USP 11, 7996.Google Scholar
Capezzuoli, E., Gandin, A., Pedley, M., 2014. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61, 121.CrossRefGoogle Scholar
Choquette, P.W., Pray, L.C., 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. The American Association of Petroleum Geologists Bulletin 54, 207250.Google Scholar
Della Porta, G., 2015. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. In: Bosence, D.W.J., Gibbons, K.A., Le Heron, D.P., Morgan, W.A., Pritchard, T., Vining, B.A. (Eds.), Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. Geological Society, London, Special Publications 418, 1768. https://doi.org/10.1144/sp418.4.Google Scholar
Deocampo, D.M., 2010. The geochemistry of continental carbonates. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.). Carbonates in Continental Settings: Geochemistry, Diagenesis and Applications. Elsevier, Amsterdam, pp. 159.Google Scholar
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (Ed.) Classification of Carbonate Rocks. American Association of Petroleum Geologists, Memoir 1, pp. 108122.Google Scholar
Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., Visscher, P.T., 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96, 141162.CrossRefGoogle Scholar
Embry, A.F., Klovan, J.E., 1971. A Late Devonian reef tract on northeastern Banks Islands, Northwest Territories. Bulletin of Canadian Petroleum Geology 19, 730781.Google Scholar
Ford, T.D., Pedley, H.M., 1996. A review of tufa and travertine deposits of the world. Earth Science Reviews 41, 117175.CrossRefGoogle Scholar
Freytet, P., Plet, A., 1996. Modern freshwater microbial carbonates: the Phormidium stromatolites (tufa–travertine) of southeastern Burgundy (Paris Basin, France). Facies 34, 219238.CrossRefGoogle Scholar
Golubić, S., Violante, C., Plenkovic-Moraj, A., Grgasovic, T., 2008. Travertines and calcareous tufa deposits: an insight into diagenesis. Geologia Croatica 61, 363378.CrossRefGoogle Scholar
Gradziński, M., 2010. Factors controlling growth of modern tufa: results of a field experiment. In: Pedley, H.M., Rogerson, M. (Eds.), Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society of London, Special Publications 336, 143191.Google Scholar
Gradziński, M., Hercman, H., Jaskiewicz, M., Szczurek, S., 2013. Holocene tufa in the Slovak Karst: facies, sedimentary environments and depositional history. Geological Quarterly 57, 769788.CrossRefGoogle Scholar
Jones, B., 2017. Review of aragonite and calcite crystal morphogenesis in thermal spring systems. Sedimentary Geology 354, 923.CrossRefGoogle Scholar
Kano, A., Matsuoka, J., Kojo, T., Fujii, H., 2003. Origin of annual laminations in tufa deposits, southwest Japan. Paleogeography, Paleoclimatology, Paleoecology 191, 243262.CrossRefGoogle Scholar
Manzo, E., Perri, E., Tucker, M.E., 2012. Carbonate deposition in a fluvial tufa system: processes and products (Corvino Valley – southern Italy). Sedimentology 59, 553577.CrossRefGoogle Scholar
Merz-Preiβ, M., Riding, R., 1999. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sedimentary Geology 126, 103124.CrossRefGoogle Scholar
Oliveira, E.C., Rossetti, D.F., Utida, G., 2017. Paleoenvironmental evolution of continental carbonates in west-central Brasil. Anais da Academia Brasileira de Ciências 89, 407429.CrossRefGoogle Scholar
Oste, J.T.F., Arai, M., França, A.B., Cury, L.F., Bahniuk, A.M., 2018. Geoquímica e palinologia de tufas calcárias da região de Bonito (MS): implicações ambientais. Geociências 37, 733744.CrossRefGoogle Scholar
Oste, J.T.F., Rodríguez-Berriguete, A., Dal'Bó, P.F., 2021. Depositional and environmental controlling factors on the genesis of Quaternary tufa deposits from Bonito region, Central-West Brazil. Sedimentary Geology 413, 105824. https://doi.org/10.1016/j.sedgeo.2020.105824.CrossRefGoogle Scholar
Oste, J.T.F., Rodríguez-Berriguete, A., Dal'Bó, P.F., 2023. Coarsening of tufa textures through early diagenesis: modern and fossil examples from Bonito region (Central-West, Brazil). Journal of South American Earth Sciences 128, 104450. https://doi.org/10.1016/j.jsames.2023.104450.CrossRefGoogle Scholar
Özkul, M., Kele, S., Gökgöz, A., Shen, C., Jones, B., Baykara, M.O., Fórizs, I., Németh, T., Chang, Y., Alçiçek, M.C., 2013. Comparison of the Quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data. Sedimentary Geology 294, 179204.CrossRefGoogle Scholar
Paula, M.S., 2012. Variabilidade do Sistema de monções de verão durante os últimos 1500 anos na região de Bonito – MS, com base em registros paleoclimáticos de espeleotemas. Master's thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 121 pp.Google Scholar
Pedley, M., 2014. The morphology and function of thrombolytic calcite precipitating biofilms: a universal model derived from freshwater mesocosm experiments. Sedimentology 61, 2240.CrossRefGoogle Scholar
Pedley, M., Andrews, J., Ordonez, S., Garcia del Cura, M.A., Martin, J.A.G., Taylor, D., 1996. Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Paleogeography, Paleoclimatology, Paleoecology 121, 239257.CrossRefGoogle Scholar
Pedley, M., Rogerson, M., Middleton, R., 2009. Freshwater calcite precipitates from in vitro mesocosm flume experiments: a case for biomediation of tufas. Sedimentology 56, 511527.CrossRefGoogle Scholar
Pentecost, A., 1995. The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews 14, 10051028.CrossRefGoogle Scholar
Pentecost, A., 2005. Travertine. Springer, Berlin.Google Scholar
Ribeiro, L.M.A.L., Sawakuchi, A.O., Wang, H., Sallun Filho, W., Nogueira, L., 2015. OSL dating of Brazilian fluvial carbonates (tufas) using detrital quartz grains. Quaternary International 362, 146156.CrossRefGoogle Scholar
Riccomini, C., Nogueira, A.C.R., Sial, A.N., 2007. Carbon and oxygen isotope geochemistry of Ediacaran outer platform carbonates, Paraguay Belt, central Brazil. Anais da Academia Brasileira de Ciências 79, 519527.CrossRefGoogle Scholar
Riding, R., 1991. Classification of microbial carbonates. In: Riding, R. (Ed.), Calcareous Algae and Stromatolites. Springer-Verlag, Berlin, pp. 2151.CrossRefGoogle Scholar
Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47, 179214.CrossRefGoogle Scholar
Romero, G.R., Sanchez, E.A.M., Morais, L., Boggiani, P.C., Fairchild, T.R., 2016. Tubestone microbialite association in the Ediacaran cap carbonates in the southern Paraguay Fold Belt (SW Brazil): geobiological and stratigraphic implications for a Marinoan cap carbonate. Journal of South American Earth Sciences 71, 172181.CrossRefGoogle Scholar
Rott, E., Holzinger, A., Gesierich, D., Kofler, W., Sanders, D., 2010. Cell morphology, ultrastructure, and calcification pattern of Oocardium stratum, a peculiar lotic desmid. Protoplasma 243, 3950.CrossRefGoogle Scholar
Rott, E., Hotzy, R., Cantonati, M., Sanders, D., 2012. Calcification types of Oocardium stratum Nägeli and microhabitat conditions in springs of the Alps. Freshwater Science 31, 610624.CrossRefGoogle Scholar
Sallun Filho, W., 2005. Geomorfologia e Geoespeleologia dos Carste da Serra da Bodoquena, MS. Doctoral thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 216 pp.Google Scholar
Sallun Filho, W., Karmann, I., Boggiani, P.C., Petri, S., Cristalli, P.S., Utida, G., 2009a. A deposição de tufas Quaternárias no Estado de Mato Grosso do Sul: proposta de definição da Formação Serra da Bodoquena. Revista do Instituto de Geociência – USP 9, 4760.Google Scholar
Sallun Filho, W., Karmann, I., Sallun, A.E.M., Suguio, K., 2009b. Quaternary tufa in the Serra da Bodoquena Karst, West-Central Brazil: evidence of wet period. IOP Conf. Series: Earth and Environmental Science 6, 072055. https://doi.org/10.1088/1755-1307/6/7/072055.Google Scholar
Schidlowski, M., 2000. Carbon isotopes and microbial sediments. In: Riding, R.E., Awramik, S.M. (Eds.), Microbial Sediments. Springer-Verlag, Berlin, pp. 8495.CrossRefGoogle Scholar
Shiraishi, F., 2011. Photosynthesis-induced stromatolite formation in the freshwater creeks. In: Reitner, J., Queric, N., Arp., G. (eds.) Advances in Geobiology of Stromatolite Formation. Lecture Notes in Earth Sciences 131, pp. 135140.Google Scholar
Shiraishi, F., Bissett, A., de Beer, D., Reimer, A., Arp, G., 2008a. Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerhöfer and Deinschwanger Creek, Germany). Geomicrobiology Journal 25, 8394.CrossRefGoogle Scholar
Shiraishi, F., Reimer, A., Bissett, A., de Beer, D., Arp, G., 2008b. Microbial effects on biofilm calcification, ambient water chemistry and stable isotope records in a highly supersaturated setting (Westerhöfer Bach, Germany). Paleogeography, Paleoclimatology, Paleoecology 262, 91106.CrossRefGoogle Scholar
Shiraishi, F., Okumura, T., Takahashi, Y., Kano, A., 2010. Influence of microbial photosynthesis on tufa stromatolite formation and ambient water chemistry, SW Japan. Geochimica et Cosmochimica Acta 74, 52895304.CrossRefGoogle Scholar
Shiraishi, F., Hanzawa, Y., Okumura, T., Tomioka, N., Kodama, Y., Suga, H., Takahashi, Y., Kano, A., 2017. Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics. Scientific Reports 7, 11805. https://doi.org/10.1038/s41598-017-12303-9.CrossRefGoogle ScholarPubMed
Shiraishi, F., Hanzawa, Y., Asada, J., Cury, L.F., Bahniuk, A.M., 2022. Microbial influences on tufa deposition in a tropical climate. Sedimentary Geology 427, 106045. https://doi.org/10.1016/j.sedgeo.2021.106045.CrossRefGoogle Scholar
Spadafora, A., Perri, E., Mckenzie, J.A., Vasconcelos, C., 2010. Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology 57, 2740.CrossRefGoogle Scholar
Tran, H., Rott, E., Sanders, D., 2019. Exploring the niche of a highly effective biocalcifier: calcification of the eukaryotic microalga Oocardium stratum Nägeli 1849 in a spring stream of the Eastern Alps. Facies 65, 37. https://doi.org/10.1007/s10347-019-0578-z.CrossRefGoogle Scholar
Turner, E.C., Jones, B., 2005. Microscopic calcite dendrites in cold-water tufa: implications for nucleation of micrite and cement. Sedimentology 52, 10431066.CrossRefGoogle Scholar
Utida, G., Petri, S., Oliveira, E.C., Boggiani, P.C., 2012. Microfossils in micrites from Serra da Bodoquena (MS), Brazil: taxonomy and paleoenvironmental implications. Anais da Academia Brasileira de Ciências 84, 245261.CrossRefGoogle Scholar
Utida, G., Oliveira, E.C., Tucker, M., Petri, S., Boggiani, P.C., 2017. Palaeoenvironmental interpretations based on molluscs from mid-Holocene lacustrine limestones, Mato Grosso do Sul, Brazil. Quaternary International 437, 186198.CrossRefGoogle Scholar
Vásquez-Urbez, M., Arenas, C., Pardo, G., 2012. A sedimentary facies model for stepped, fluvial tufa systems in the Iberian Range (Spain): the Quaternary Piedra and Mesa valleys. Sedimentology 59, 502526.CrossRefGoogle Scholar