Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T07:19:13.689Z Has data issue: false hasContentIssue false

A relative sea-level history for Arviat, Nunavut, and implications for Laurentide Ice Sheet thickness west of Hudson Bay

Published online by Cambridge University Press:  20 January 2017

Karen M. Simon*
Affiliation:
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada Geological Survey of Canada—Pacific, Natural Resources Canada, Sidney, BC V8L 4B2, Canada
Thomas S. James
Affiliation:
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada Geological Survey of Canada—Pacific, Natural Resources Canada, Sidney, BC V8L 4B2, Canada
Donald L. Forbes
Affiliation:
Geological Survey of Canada—Atlantic, Natural Resources Canada, Dartmouth, NS B2Y 4A2, Canada Department of Geography, Memorial University, St. John's, NL A1B 3X9, Canada
Alice M. Telka
Affiliation:
Paleotec Services, Ottawa, ON K1R 5K2, Canada
Arthur S. Dyke
Affiliation:
Geological Survey of Canada—Northern, Natural Resources Canada, Ottawa, ON K1A 0E8, Canada
Joseph A. Henton
Affiliation:
Canadian Geodetic Survey, Natural Resources Canada, Sidney, BC V8L 4B2, Canada
*
*Corresponding author at: School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.E-mail address:[email protected] (K.M. Simon).

Abstract

Thirty-six new and previously published radiocarbon dates constrain the relative sea-level history of Arviat on the west coast of Hudson Bay. As a result of glacial isostatic adjustment (GIA) following deglaciation, sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by the mid Holocene (~ 5200 cal yr BP). The rate of sea-level fall decreased in the mid and late Holocene, with sea level falling 30 m since 3000 cal yr BP. Several late Holocene sea-level measurements are interpreted to originate from the upper end of the tidal range and place tight constraints on sea level. A preliminary measurement of present-day vertical land motion obtained by repeat Global Positioning System (GPS) occupations indicates ongoing crustal uplift at Arviat of 9.3 ± 1.5 mm/yr, in close agreement with the crustal uplift rate inferred from the inferred sea-level curve. Predictions of numerical GIA models indicate that the new sea-level curve is best fit by a Laurentide Ice Sheet reconstruction with a last glacial maximum peak thickness of ~ 3.4 km. This is a 30–35% thickness reduction of the ICE-5G ice-sheet history west of Hudson Bay.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argus, D.F., and Peltier, W.R. Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives. Geophysical Journal International 181, (2010). 697723.Google Scholar
Argus, D.F., Peltier, W.R., and Watkins, M.M. Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy. Journal of Geophysical Research 104, (1999). 29,07729,093.CrossRefGoogle Scholar
Aylsworth, J.M., and Shilts, W.W. Glacial features around the Keewatin Ice Divide: districts of Mackenzie and Keewatin. Paper 88-24. (1989). Geological Survey of Canada, Ottawa.Google Scholar
Aylsworth, J., Cunningham, C.M., and Kettles, I.M. and Shilts, W.W. (1986). Surficial Geology, Henik Lakes, District of Keewatin. Map 2—1985, Scale 1:125000. Geological Survey of Canada, Ottawa.Google Scholar
Bassett, S.E., Milne, G.A., Mitrovica, J.X., and Clark, P.U. Ice sheet and solid Earth influences on far-field sea-level histories. Science 309, (2005). 925928.CrossRefGoogle ScholarPubMed
Blake, W. Radiocarbon dates XXIII. Paper 83-7. (1983). Geological Survey of Canada, Ottawa.Google Scholar
Calais, E., Han, J.Y., DeMets, C., and Nocquet, J.M. Deformation of the North American plate interior from a decade of continuous GPS measurements. Journal of Geophysical Research 111, (2006). http://dx.doi.org/10.1029/2005JB004253 CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, A.M. The Last Glacial Maximum. Science 325, (2009). 710714.CrossRefGoogle ScholarPubMed
Cook, G.T., MacKenzie, A.B., Muir, G.K.P., Mackie, G., and Gulliver, P. Sellafield-derived anthropogenic 14C in the marine intertidal environment on the NE Irish Sea. Radiocarbon 46, (2004). 877883.CrossRefGoogle Scholar
Craig, B.G. Late glacial and post-glacial history of the Hudson Bay region. Paper 68-53. (1969). Geological Survey of Canada, Ottawa.Google Scholar
Craig, B.G., and Fyles, J.G. Pleistocene geology of Arctic Canada. Paper 60-10. (1960). Geological Survey of Canada, Ottawa.Google Scholar
Craymer, M., Henton, J., and Piraszewski, M. Sea level change and vertical crustal motion in the Canadian Arctic based on GPS and tide gauges: challenges and preliminary results. American Geophysical Union Fall Meeting, December 11–15, 2006. (2006). G23BG1288B.Google Scholar
Craymer, M.R., Henton, J.A., Piraszewski, M., and Lapelle, E. An updated GPS velocity field for Canada. American Geophysical Union Fall Meeting, December 5–9, 2011. (2011). G21AG0793A.Google Scholar
Dyke, A.S. An outline of North American deglaciation with emphasis on central and northern Canada. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations — Extent and Chronology, Part II. North America, Developments in Quaternary Science 2. (2004). Elsevier, New York. 373424.Google Scholar
Dyke, A.S., and Dredge, L.A. Quaternary geology of the northwestern Canadian Shield. Fulton, R.J. Quaternary Geology of Canada and Greenland. (1989). Geological Survey of Canada, Ottawa. 189214. (no. 1) Google Scholar
Dyke, A.S., and Peltier, W.R. Forms, response times and variability of relative sea-level curves, glaciated North America. Geomorphology 32, (2000). 315333.CrossRefGoogle Scholar
Dyke, A.S., and Prest, V.K. Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géographie Physique et Quaternaire 41, (1987). 237263.CrossRefGoogle Scholar
Dyke, A.S., Dredge, L.A., and Vincent, J.-S. Configuration and dynamics of the Laurentide Ice Sheet during the Late Wisconsin maximum. Géographie Physique et Quaternaire 36, (1982). 514.CrossRefGoogle Scholar
Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J., and Veillette, J.J. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews 21, (2002). 931.CrossRefGoogle Scholar
Dyke, A.S., Dredge, L.A., and Hodgson, D.A. North American deglacial marine- and lake-limit surfaces. Géographie Physique et Quaternaire 59, (2005). 155185.CrossRefGoogle Scholar
Engelhart, S.E., Peltier, W.R., and Horton, B.P. Holocene relative sea-level changes and glacial isostatic adjustment of the U.S. Atlantic coast. Geology 39, (2011). 751754.CrossRefGoogle Scholar
Fairbanks, R.G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637642.CrossRefGoogle Scholar
Gorham, E., Lehman, C., Dyke, A., Janssens, J., and Dyke, L. Temporal and spatial aspects of peatland initiation following deglaciation in North America. Quaternary Science Reviews 26, (2007). 300311.CrossRefGoogle Scholar
Halsey, L.A., Vitt, D.H., and Bauer, I.E. Peatland initiation during the Holocene in continental western Canada. Climatic Change 40, (1998). 315342.CrossRefGoogle Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, F.G., Manning, S.W., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. Marine04 Marine radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46, (2004). 10591086.CrossRefGoogle Scholar
James, T.S., and Bent, A.L. A comparison of eastern North American seismic strain-rates to glacial rebound strain-rates. Geophysical Research Letters 21, (1994). 21272130.CrossRefGoogle Scholar
James, T.S., and Ivins, E.R. Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum. Journal of Geophysical Research 103, (1998). 49935017.CrossRefGoogle Scholar
James, T.S., Gowan, E.J., Wada, I., and Wang, K. Viscosity of the asthenosphere from glacial isostatic adjustment and subduction dynamics at the northern Cascadia subduction zone, British Columbia, Canada. Journal of Geophysical Research 144, (2009). http://dx.doi.org/10.1029/2008JB006077 Google Scholar
Kouba, J., and Héroux, P. Precise point positioning using IGS orbit and clock products. GPS Solutions 5, (2001). 1228.CrossRefGoogle Scholar
Kuhry, P., and Turunen, J. The postglacial development of boreal and subarctic peatlands. Wieder, R.K., and Vitt, D.H. Boreal Peatland Ecosystems. (2006). Springer-Verlag, Berlin. 2546.Google Scholar
Lambeck, K. Glacial rebound of the British Isles — I. Preliminary model results. Geophysical Journal International 115, (1993). 941959.CrossRefGoogle Scholar
Lambeck, K., and Chappell, J. Sea level change through the last glacial cycle. Science 292, (2001). 679686.CrossRefGoogle ScholarPubMed
Lambeck, K., Smither, C., and Johnston, P. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophysical Journal International 134, (1998). 102144.CrossRefGoogle Scholar
Lambert, A., Courtier, N., Sasagawa, G.S., Klopping, F., Winester, D., James, T.S., and Liard, J.O. New constraints on Laurentide postglacial rebound from absolute gravity measurements. Geophysical Research Letters 28, (2001). 21092112.CrossRefGoogle Scholar
Lambert, A., Courtier, N., and James, T.S. Long-term monitoring by absolute gravimetry: tides to postglacial rebound. Journal of Geodynamics 41, (2006). 307317.CrossRefGoogle Scholar
Lee, H.A. Surficial geology of southern District of Keewatin and the Keewatin Ice Divide, Northwest Territories. Bulletin 51. (1959). Geological Survey of Canada, Ottawa. 142.Google Scholar
Lee, H.A. Method of deglaciation, age of submergence, and rate of uplift west and east of Hudson Bay, Canada. Builetyn Peryglacjalny 11, (1962). 239245.Google Scholar
Lee, H.A. Quaternary geology. Beals, C.S., Shenstone, D.A. Science, History and Hudson Bay vol. 2, (1968). Department of Energy, Mines and Resources, Ottawa. 503543.Google Scholar
Lewis, C.A., Reimer, P.J., and Reimer, R.W. Marine reservoir corrections: St. Helena, South Atlantic Ocean. Radiocarbon 50, (2008). 275280.CrossRefGoogle Scholar
Lowdon, J.A., and Blake, W. Radiocarbon dates XIX. Paper 79-7. (1979). Geological Survey of Canada, Ottawa.Google Scholar
Mazzotti, S., and Adams, J. Rates and uncertainties on seismic moment and deformation in eastern Canada. Journal of Geophysical Research 110, (2005). http://dx.doi.org/10.1029/2004JB003510 CrossRefGoogle Scholar
Mazzotti, S., Lambert, A., Henton, J., James, T.S., and Courtier, N. Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid-continent North America. Geophysical Research Letters 38, (2011). http://dx.doi.org/10.1029/2011GL049846 CrossRefGoogle Scholar
McMartin, I., and Dredge, L.A. History of ice flow in the Schultz Lake and Wager Bay areas, Kivalliq region, Nunavut. Current Research 2005-B2. (2005). Geological Survey of Canada, Ottawa.Google Scholar
McMartin, I., and Henderson, P.J. Evidence from Keewatin (central Nunavut) for paleo-ice divide migration. Géographie Physique et Quaternaire 58, (2004). 163186.CrossRefGoogle Scholar
McMartin, I., and Henderson, P.J. Ice flow history and glacial stratigraphy, Kivalliq region, Nunavut (NTS 55J, K, L, M, N, O; 65I and P): complete datasets, maps and photographs from the Western Churchill NATMAP Project. Open File 4595. (2004). Geological Survey of Canada, Ottawa.Google Scholar
McMartin, I., Dredge, L.A., Ford, K.L., and Kjarsgaard, I.M. Till composition, provenance and stratigraphy beneath the Keewatin Ice Divide, Schultz Lake area (NTS 66A), mainland Nunavut. Open File 5312. (2006). Geological Survey of Canada, Ottawa.Google Scholar
McNeely, R., and Atkinson, D.E. Geological Survey of Canada radiocarbon dates XXXII. Current Research 1995-G. (1996). Geological Survey of Canada, Ottawa.Google Scholar
McNeely, R., and Brennan, J. Geological Survey of Canada revised shell dates. Open File 5019. (2005). Geological Survey of Canada, Ottawa.Google Scholar
McNeely, R., Dyke, A.S., and Southon, J.R. Canadian marine reservoir ages, preliminary data assessment. Open File 5049. (2006). Geological Survey of Canada, Ottawa.Google Scholar
Milne, G.A., Davis, J.L., Mitrovica, J.X., Scherneck, H.-G., Johansson, J.M., Vermeer, M., and Koivula, H. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291, (2001). 23812385.CrossRefGoogle ScholarPubMed
Mitrovica, J.X., and Forte, A.M. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth and Planetary Science Letters 225, (2004). 177189.CrossRefGoogle Scholar
Mitrovica, J.X., and Milne, G.A. On post-glacial sea level: I. General theory. Geophysical Journal International 154, (2003). 253267.CrossRefGoogle Scholar
Mitrovica, J.X., and Peltier, W.R. On postglacial geoid subsidence over the equatorial oceans. Journal of Geophysical Research 96, (1991). 20,05320,071.CrossRefGoogle Scholar
Peltier, W.R. Mantle viscosity and ice-age ice sheet topography. Science 273, (1996). 13591364.CrossRefGoogle Scholar
Peltier, W.R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Reviews of Earth and Planetary Sciences 32, (2004). 111149.CrossRefGoogle Scholar
Peltier, W.R. Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment. Quaternary Science Reviews 28, (2009). 16581674.CrossRefGoogle Scholar
Peltier, W.R., and Fairbanks, R.G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, (2006). 33223337.CrossRefGoogle Scholar
Peltier, W.R., Argus, D., Drummond, R., and Moore, A.W. Postglacial rebound and current ice loss estimates from space geodesy: the new ICE-6G (VM5a) global model. American Geophysical Union Fall Meeting, December 3–7, 2012. (2012). G23C-02 Google Scholar
Peltier, W.R., Drummond, R., and Roy, K. Comment on “Ocean mass from GRACE and glacial isostatic adjustment”. Chambers, D.P. et al. Journal of Geophysical Research 117, (2012). http://dx.doi.org/10.1029/2011JB008967 CrossRefGoogle Scholar
Prinsenberg, S.J. Seasonal current variations observed in western Hudson Bay. Journal of Geophysical Research 92, (1987). 1075610766.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Ridler, R.H., and Shilts, W.W. Exploration for Archean polymetallic sulphide deposits in permafrost terrains: an integrated geological/geochemical technique; Kaminak Lake area, District of Keewatin. Paper 73-34. (1974). Geological Survey of Canada, Ottawa.CrossRefGoogle Scholar
Seed, R., and Suchanek, T.H. Population and community ecology of Mytilus. Gosling, E. The Mussel Mytilus: Ecology, Physiology. (1992). Genetics and Culture. Elsevier, Amsterdam. 87169.Google Scholar
Sella, G.F., Stein, S., Dixon, T.H., Craymer, M., James, T.S., Mazzotti, S., and Dokka, R.K. Observation of glacial isostatic adjustment in ‘stable’ North America with GPS. Geophysical Research Letters 34, (2007). http://dx.doi.org/10.1029/2006GL027081 CrossRefGoogle Scholar
Shilts, W. Drift prospecting; geochemistry of eskers and till in permanently frozen terrain: District of Keewatin; Northwest Territories. Paper 72-45. (1973). Geological Survey of Canada, Ottawa. 132.Google Scholar
Shilts, W.W., Dean, W.E., and Klassen, R.A. Physical, chemical, and stratigraphic aspects of sedimentation in lake basins of the eastern Arctic Shield. Paper 76-1A. (1976). Geological Survey of Canada, Ottawa. 245254.Google Scholar
Shilts, W.W., Aylsworth, J.M., Kaszycki, C.A., and Klassen, R.A. Canadian Shield. Graf, W.L. Geomorphic Systems of North America, Centennial Special. Geological Society of America 2, (1987). Boulder, Colorado. 119161.Google Scholar
Stuiver, M., and Polach, H.A. Discussion: reporting of 14C data. Radiocarbon 19, (1977). 355363.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Tamisiea, M.E. Ongoing glacial isostatic contributions to observations of sea level change. Geophysical Journal International 186, (2011). 10361044.CrossRefGoogle Scholar
Tamisiea, M.E., Mitrovica, J.X., and Davis, J.L. GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316, (2007). 881883.CrossRefGoogle ScholarPubMed
Tella, S., Paul, D., Berman, R.G., Davis, W.J., Peterson, T.D., Pehrsson, S.J., and Kerswill, J.A. Bedrock geology compilation and regional synthesis of parts of the Hearne and Rae domains, western Churchill Province, Nunavut–Manitoba. Open File 5441. (2007). Geological Survey of Canada, Ottawa.Google Scholar
Thomas, D. Development of a Coastal Community Climate Change Action Plan for Arviat, Nunavut. (2008). University of Manitoba, Winnipeg, Manitoba. Master of Natural Resource Management thesis.Google Scholar
Tiampo, K.F., Mazzotti, S., and James, T.S. Analysis of GPS measurements in eastern Canada using principal component analysis. Pure and Applied Geophysics 169, (2012). 14831506.CrossRefGoogle Scholar
Tushingham, A.M., and Peltier, W.R. Ice-3G: a new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. Journal of Geophysical Research 96, (1991). 44974523.CrossRefGoogle Scholar
Vettoretti, G., and Peltier, W.R. Last Glacial Maximum ice sheet impacts on North Atlantic climate variability: the importance of a sea ice lid. Geophysical Research Letters 40, (2013). 63786383.CrossRefGoogle Scholar
Walton, A., Trautman, M.A., and Friend, J.P. Isotopes, Inc. radiocarbon measurements I. Radiocarbon 3, (1961). 4759.CrossRefGoogle Scholar
Witman, J.D., and Dayton, P.K. Rocky subtidal communities. Bertness, M.D., Gaines, S.D., and Hay, M.E. Marine Community Ecology. (2001). Sinauer Associates, Massachusetts. 339366.Google Scholar
Zoltai, S.C. Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years BP. Géographie Physique et Quaternaire 49, (1995). 4554.CrossRefGoogle Scholar
Supplementary material: File

Simon et al. supplementary material

Appendix

Download Simon et al. supplementary material(File)
File 23.2 KB