Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:28:29.807Z Has data issue: false hasContentIssue false

Reconstructing postglacial hydrologic and environmental change in the eastern Kenai Peninsula lowlands using proxy data and mass balance modeling

Published online by Cambridge University Press:  15 March 2022

Ellie Broadman*
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
Darrell S. Kaufman
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
R. Scott Anderson
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
Sonya Bogle
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
Matthew Ford
Affiliation:
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, USA
David Fortin
Affiliation:
Department of Geography and Planning, University of Saskatchewan, Saskatoon, SK, Canada
Andrew C. G. Henderson
Affiliation:
School of Geography, Politics & Sociology, Newcastle University, Newcastle upon Tyne, UK
Jack H. Lacey
Affiliation:
National Environmental Isotope Facility, Isotope Geosciences Facility, British Geological Survey, Keyworth, Nottingham, UK
Melanie J. Leng
Affiliation:
National Environmental Isotope Facility, Isotope Geosciences Facility, British Geological Survey, Keyworth, Nottingham, UK Centre for Environmental Geochemistry, School of Biosciences, University of Nottingham, Nottingham, UK
Nicholas P. McKay
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
Samuel E. Muñoz
Affiliation:
Department of Marine and Environmental Science, Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
*
*Corresponding author email address: [email protected]

Abstract

Despite extensive paleoenvironmental research on the postglacial history of the Kenai Peninsula, Alaska, uncertainties remain regarding the region's deglaciation, vegetation development, and past hydroclimate. To elucidate this complex environmental history, we present new proxy datasets from Hidden and Kelly lakes, located in the eastern Kenai lowlands at the foot of the Kenai Mountains, including sedimentological properties (magnetic susceptibility, organic matter, grain size, and biogenic silica), pollen and macrofossils, diatom assemblages, and diatom oxygen isotopes. We use a simple hydrologic and isotope mass balance model to constrain interpretations of the diatom oxygen isotope data. Results reveal that glacier ice retreated from Hidden Lake's headwaters by ca. 13.1 cal ka BP, and that groundwater was an important component of Kelly Lake's hydrologic budget in the Early Holocene. As the forest developed and the climate became wetter in the Middle to Late Holocene, Kelly Lake reached or exceeded its modern level. In the last ca. 75 years, rising temperature caused rapid changes in biogenic silica content and diatom oxygen isotope values. Our findings demonstrate the utility of mass balance modeling to constrain interpretations of paleolimnologic oxygen isotope data, and that groundwater can exert a strong influence on lake water isotopes, potentially confounding interpretations of regional climate.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ager, T.A., 1983. Holocene vegetational history of Alaska. In: Wright, H.E. (Ed.), Late Quaternary Environments of the United States, vol. 2. University of Minnesota Press, pp. 128141.Google Scholar
Anderson, L., Abbott, M.B., Finney, B.P., Burns, S.J., 2005. Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quaternary Research 64, 2135.CrossRefGoogle Scholar
Anderson, L., Abbott, M.B., Finney, B.P., Burns, S.J., 2007. Late Holocene moisture balance variability in the southwest Yukon Territory, Canada. Quaternary Science Reviews 26, 130141.CrossRefGoogle Scholar
Anderson, L., Birks, J., Rover, J., Guldager, N., 2013. Controls on recent Alaskan lake changes identified from water isotopes and remote sensing. Geophysical Research Letters 40, 34133418.CrossRefGoogle Scholar
Anderson, R.S., Berg, E., Williams, C., Clark, T., 2019. Postglacial vegetation community change over an elevational gradient on the western Kenai Peninsula, Alaska: pollen records from Sunken Island and Choquette lakes. Journal of Quaternary Science 34, 309322.CrossRefGoogle Scholar
Anderson, R.S., Hallett, D.J., Berg, E., Jass, R.B., Toney, J.L., de Fontaine, C.S., DeVolder, A., 2006. Holocene development of Boreal forests and fire regimes on the Kenai Lowlands of Alaska. The Holocene 16, 791803.CrossRefGoogle Scholar
Anderson, R.S., Kaufman, D.S., Berg, E., Schiff, C., Daigle, T., 2017. Holocene biogeography of Tsuga mertensiana and other conifers in the Kenai Mountains and Prince William Sound, south-central Alaska. The Holocene 27, 485495.CrossRefGoogle Scholar
Appleby, P., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W., Smol., J. (Eds.), Tracking Environmental Change Using Lake Sediments, vol. 1. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 171203.Google Scholar
Arp, C.D., Jones, B.M., Grosse, G., 2013. Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A. Limnology and Oceanography 58, 20132028.CrossRefGoogle Scholar
Ayres, K.R., Sayer, C.D., Skeate, E.R., Perrow, M.R., 2007. Palaeolimnology as a tool to inform shallow lake management: an example from Upton Great Broad, Norfolk, UK. Biodiversity and Conservation 17, 21532168.CrossRefGoogle Scholar
Bailey, H.L., Kaufman, D.S., Henderson, A.C.G., Leng, M.J., 2015. Synoptic scale controls on the δ18O in precipitation across Beringia. Geophysical Research Letters 42, 46084616.CrossRefGoogle Scholar
Bailey, H.L., Kaufman, D.S., Sloane, H.J., Hubbard, A.L., Henderson, A.C.G., Leng, M.J., Meyer, H., Welker, J.M., 2018. Holocene atmospheric circulation in the central North Pacific: A new terrestrial diatom and δ18Odiatom dataset from the Aleutian Islands. Quaternary Science Reviews 194, 2738.CrossRefGoogle Scholar
Bailey, H.L., Klein, E.S., Welker, J.M., 2019. Synoptic and mesoscale mechanisms driver winter precipitation δ18O/δ2H in south-central Alaska. Journal of Geophysical Research: Atmospheres 124, 42524266.CrossRefGoogle Scholar
Barron, J.A., Anderson, L., 2011. Enhanced Late Holocene ENSO/PDO expression along the margins of the eastern North Pacific. Quaternary International 235, 312.CrossRefGoogle Scholar
Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57, 289300.Google Scholar
Berg, E.E., Kaufman, D.S., Anderson, R.S., Wiles, G.C., Lowell, T.V., Mitchell, E.A.D, Hu, F.S., Werner, A., in press. Late-glacial and Holocene lake level fluctuations on the Kenai Lowland, reconstructed from satellite-fen peat deposits and ice-shoved ramparts, Kenai Peninsula, Alaska. Quaternary 5.Google Scholar
Berkelhammer, M.B., Stott, L.D., Yoshimura, K., Johnson, K., Sinha, A., 2012. Synoptic and mesoscale controls on the isotopic composition of precipitation in the western United States. Climate Dynamics 38, 433454.CrossRefGoogle Scholar
Bhatia, M.P., Das, S.B., Kujawinski, E.B., Henderson, P., Burke, A., Charette, M.A., 2011. Seasonal evolution of water contributions to discharge from a Greenland outlet glacier: insight from a new isotope-mixing model. Journal of Glaciology 57, 929941.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Bradbury, J.P., Forester, R.M., Thompson, R.S., 1989. Late Quaternary paleolimnology of Walker Lake, Nevada. Journal of Paleolimnology 1, 249267.Google Scholar
Brandriss, M.E., O'Neil, J.R., Edlund, M.B., Stoermer, E.F., 1998. Oxygen isotope fractionation between diatomaceous silica and water. Geochimica et Cosmochimica Acta 62, 11191125.CrossRefGoogle Scholar
Bretherton, C.S., Widmann, M., Dymnikov, V.P., Wallace, J.M., Bladé, I., 1999. The effective number of spatial degrees of freedom of a time-varying field. Journal of Climate 12, 19902009.2.0.CO;2>CrossRefGoogle Scholar
Brewer, T.S., Leng, M.J., Mackay, A.W., Lamb, A.L., Tyler, J.T., Marsh, N.G., 2008. Unraveling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry. Journal of Quaternary Science 23, 321330.CrossRefGoogle Scholar
Broadman, E., Kaufman, D.S., Henderson, A.C.G., Berg, E.E., Anderson, R.S., Leng, M.J., Stahnke, S.A., Muñoz, S.E., 2020. Multi-proxy evidence for millennial-scale changes in North Pacific Holocene hydroclimate from the Kenai Peninsula lowlands, south-central Alaska. Quaternary Science Reviews 241, 106420.CrossRefGoogle Scholar
Buczkó, K., Szurdoki, E., Braun, M., Magyari, E., 2018. Reconciling diverse diatom-based lake responses to climate change in four mountain lakes in the South-Carpathian Mountains during the last 17 kyrs. Quaternary International 477, 117137.CrossRefGoogle Scholar
Butz, C., Grosjean, M., Fischer, D., Wunderle, S., Tylmann, W., Rein, B., 2015. Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments. Journal of Applied Remote Sensing 9, 096031.CrossRefGoogle Scholar
Cayan, D.R., Peterson, D.H., 1989. The influence of North Pacific circulation on streamflow in the West. In: Peterson, D.H. (Ed.), Aspects of Climate Variability in the Pacific and Western Americas, vol. 55. American Geophysical Union, Washington, DC, pp. 375398.Google Scholar
Chapligin, B., Leng, M.J., Webb, E., Alexandre, A., Dodd, J.P., Ijiri, A., Lücke, A., et al. , 2011. Inter-laboratory comparison of oxygen isotope compositions from biogenic silica. Geochimica et Cosmochimica Acta 75, 72427256.CrossRefGoogle Scholar
Clegg, B.F., Kelly, R., Clarke, G.H., Walker, I.R., Hu, F.S., 2011. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska. Proceedings of the National Academy of Sciences 108, 1929919304.CrossRefGoogle ScholarPubMed
Cooper, W.S., 1942. Vegetation of the Prince William Sound region, Alaska; with a brief excursion into post-Pleistocene climatic history. Ecological Monographs 12, 122.CrossRefGoogle Scholar
Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiogi, E. (Ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures. Laboratorio di Geologica Nucleare, Pisa, Italy, pp. 9130.Google Scholar
Crespin, J., Sylvestre, F., Alexandre, A., Sonzogni, C., Pailles, C., Perga, M-E., 2010. Re-examination of the temperature-dependent relationship between δ18Odiatoms and δ18Olake water and implications for paleoclimate inferences. Journal of Paleolimnology 44, 547557.CrossRefGoogle Scholar
Crisman, T.L., Crisman, U.A.M., Binford, M.W., 1986. Interpretation of bryozoan microfossils in lacustrine sediment cores. Hydrobiologia 143, 113118.CrossRefGoogle Scholar
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16, 436468.CrossRefGoogle Scholar
Davies, L.J., Jensen, B.J.L., Froese, D.G., Wallace, K.L., 2016. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quaternary Science Reviews 146, 2853.CrossRefGoogle Scholar
Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. Journal of Sedimentary Research 44, 242248.Google Scholar
Digerfeldt, G., Almendinger, J.E., Björck, S., 1992. Reconstruction of past lake levels and their relation to groundwater hydrology in the Parkers Prairie sandplain, west-central Minnesota. Palaeogeography, Palaeoclimatology, Palaeoecology 94, 99118.CrossRefGoogle Scholar
Dodd, J.P., Sharp, Z.D., 2010. A laser fluorination method for oxygen isotope analysis of biogenic silica and a new oxygen isotope calibration of modern diatoms in freshwater environments. Geochimica et Cosmochimica Acta 74, 13811390.CrossRefGoogle Scholar
Dodd, J.P., Sharp, Z.D., Fawcett, P.J., Brearley, A.J., McCubbin, F.M., 2012. Rapid post-mortem maturation of diatom silica oxygen isotope values. Geochemistry and Geophysics 13(9), Q09014.Google Scholar
Dodd, J.P., Wiedenheft, W., Schwartz, J.M., 2017. Dehydroxylation and diagenetic variations in diatom oxygen isotope values. Geochimica et Cosmochimica Acta 199, 185195.CrossRefGoogle Scholar
Du, X., Hendy, I., Hinnov, L., Brown, E., Zhu, J., Poulsen, C.J., 2020. High-resolution interannual precipitation reconstruction of Southern California: implications for Holocene ENSO evolution. Earth and Planetary Science Letters 554, 116670.CrossRefGoogle Scholar
Ebisuzaki, W., 1997. A method to estimate the statistical significance of a correlation when the data are serially correlated. Journal of Climate 1510, 21472153.2.0.CO;2>CrossRefGoogle Scholar
Eilers, J.M., Landers, D.H., Newell, A.D., Mitch, M.E., Morrison, M., Ford, J., 1992. Major ion chemistry of lakes on the Kenai Peninsula, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 50, 816826.CrossRefGoogle Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. John Wiley & Sons, Chichester, United Kingdom.Google Scholar
NSIDC (National Ice Center and National Snow and Ice Data Center), 2018. Multisensor Analyzed Sea Ice Extent—Northern Hemisphere (MASIE), version 1, Section 16; Cook Inlet. Compiled by Fetterer, F., Savoie, M., Helfrich, S., and Clemente-Colón, P. 2010, updated daily. Boulder, Colorado USA. https://doi.org/10.7265/N5GT5K3K.Google Scholar
Finkelstein, S.A., Gajewski, K., 2008. Responses of Fragilarioid-dominated diatom assemblages in a small Arctic lake to Holocene climatic changes, Russell Island, Nunavut, Canada. Journal of Paleolimnology 40, 10791095.CrossRefGoogle Scholar
Fisher, D., Osterberg, E., Dyke, A., Dahl-Jensen, D., Demuth, M., Zdanowicz, C., Bourgeois, J., et al. , 2008. The Mt Logan Holocene–late Wisconsinan isotope record: tropical Pacific–Yukon connections. The Holocene 18, 667677.CrossRefGoogle Scholar
Foged, N., 1971. Diatoms found in a bottom sediment sample from a small deep lake on the Northern Slope, Alaska. Nova Hedwigia 21: 9231034.Google Scholar
Foged, N., 1981. Diatoms in Alaska. Bibliotheca Phycologica 53, 1317.Google Scholar
Francis, D.R., 2001. Bryozoan statoblasts. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediments, vol. 4: Zoological Indicators. Springer, New York, pp. 105124.CrossRefGoogle Scholar
Gibson, J.J., Prepas, E.E., McEachern, P., 2002. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modeling and results from a regional survey of Boreal lakes. Journal of Hydrology 262, 128144.CrossRefGoogle Scholar
Gonfiantini, R., 1986. Environmental isotopes in lake studies. In: Fritz, P., Fontes, J. (Eds.), Handbook of Environmental Isotope Geochemistry, vol 3. Elsevier, New York, pp. 113168.Google Scholar
Grimm, E.C., 1987. CONISS—a Fortran-77 program for stratigraphically constrained cluster-analysis by the method of incremental sum of squares. Computational Geoscience 13, 1335.CrossRefGoogle Scholar
Grimm, E.C., Maher, L.J. Jr., Nelson, D.M., 2009. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quaternary Research 72, 301308.CrossRefGoogle Scholar
Hartikainen, H., Johnes, P., Moncrieff, C., Okamura, B., 2009. Bryozoan populations reflect nutrient enrichment and productivity gradients in rivers. Freshwater Biology 54, 23202334.CrossRefGoogle Scholar
Hayward, G.D., Colt, S., McTeague, M.L., Hollingsworth, T.N., 2017. Climate change vulnerability assessment for the Chugach National Forest and the Kenai Peninsula. General Technical Report PNW-GTR-950. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Oregon, 340 pp.CrossRefGoogle Scholar
Henne, P.D., Elkin, C.M., Reineking, B., Bugmann, H., Tinner, W., 2011. Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. Journal of Biogeography 38, 933949.CrossRefGoogle Scholar
Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta 58, 34253437.CrossRefGoogle Scholar
Hosono, T., Yamada, C., Manga, M., Wang, C.-Y., Tanimizu, M., 2020. Stable isotopes show that earthquakes enhance permeability and release water from mountains. Nature Communications 11, 2776.CrossRefGoogle ScholarPubMed
Hu, F.S., Finney, B.P., Brubaker, L.B., 2001. Effects of Holocene Alnus expansion on aquatic productivity, nitrogen cycling, and soil development in southwestern Alaska. Ecosystems 4, 358368.CrossRefGoogle Scholar
Ide, K., Hosono, T., Kagabu, M., Fukamizu, K., Tokunaga, T., Shimada, J., 2020. Changes of groundwater flow systems after the 2016 MW 7.0 Kumamoto earthquake deduced by stable isotopic and CFC-12 compositions of natural springs. Journal of Hydrology 583, 124551.CrossRefGoogle Scholar
Jackson, S.T., Booth, R.K., Reeves, K., Anderson, J.J., Minckley, T.A., Jones, R.A., 2014. Inferring local to regional changes in forest composition from Holocene macrofossils and pollen of a small lake in central upper Michigan. Quaternary Science Reviews 98, 6073.CrossRefGoogle Scholar
Jones, M.C., Anderson, L., Keller, K., Nash, B., Littell, V., Wooller, M., Jolley, C.A., 2019. An assessment of plant species differences on cellulose oxygen isotopes from two Kenai Peninsula Alaska peatlands: implications for hydroclimatic reconstructions. Frontiers in Earth Science 7, 125.CrossRefGoogle Scholar
Jones, M.C., Wooller, M., Peteet, D.M., 2014. A deglacial and Holocene record of climate variability in south-central Alaska from stable oxygen isotopes and plant macrofossils in peat. Quaternary Science Reviews 87, 111.CrossRefGoogle Scholar
Juggins, S., 2017. Rioja: Analysis of Quaternary Science Data, R package, version (0.9-21). http://cran.r172project.org/package=rioja.Google Scholar
Juillet-Leclerc, A., Labeyrie, L., 1987. Temperature dependence of the oxygen isotopic fractionation between diatom silica and water. Earth and Planetary Science Letters 84, 6974.CrossRefGoogle Scholar
Kalnay, E., Manamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., et al. , 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, 437470.2.0.CO;2>CrossRefGoogle Scholar
Karlstrom, T.N.V., 1964. Quaternary geology of the Kenai Lowland and glacial history of the Cook Inlet region, Alaska. U.S. Geological Survey Professional Paper 443. https://doi.org/10.3133/pp443.CrossRefGoogle Scholar
Kaufman, D.S., Anderson, R.S., Hu, F.S., Berg, E., Werner, A., 2010. Evidence for a variable and wet Younger Dryas in southern Alaska. Quaternary Science Reviews 29, 14451452.CrossRefGoogle Scholar
Kaufman, D.S., Axford, Y., Anderson, R.S., Lamoureux, S.F., Schindler, D.E., Walker, I.R., Werner, A., 2012. A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska. Journal of Paleolimnology 48, 926.CrossRefGoogle Scholar
Kaufman, D.S., Axford, Y.L., Henderson, A.C.G., McKay, N.P., Oswald, W.W., Saenger, C., Anderson, R.S., et al. , 2016. Holocene climate changes in eastern Beringia (NW North America)—a systematic review of multi-proxy evidence. Quaternary Science Reviews 147, 312339.CrossRefGoogle Scholar
Koning, E., Gehlen, M., Flank, A.M., Calas, G., Epping, E., 2007. Rapid post-mortem incorporation of aluminum in diatom frustules: evidence from chemical and structural analyses. Marine Chemistry 106, 208222.CrossRefGoogle Scholar
Kopczynski, S.E., Kelley, S.E., Lowell, T.V., Evenson, E.B., Applegate, P.J., 2017. Latest Pleistocene advance and collapse of the Matanuska-Knik glacier system, Anchorage Lowland, southern Alaska. Quaternary Science Reviews 156, 121134.CrossRefGoogle Scholar
Krabbenhoft, D.P., Bowser, C.J., Anderson, M.P., Valley, J.W., 1990. Estimating Groundwater Exchange with Lakes: 1. The Stable Isotope Mass Balance Method. Water Resources Research 26(10), 24452453.Google Scholar
Krammer, K., Lange-Bertalot, H., 1986–1991. Bacillariophyceae Band 1–4. Gustav Fischer Verlag, Stuttgart, Germany.Google Scholar
Krawiec, A.C.L., Kaufman, D.S., 2014. Holocene storminess inferred from sediments of two lakes on Adak Island, Alaska. Quaternary Research 82, 7384.CrossRefGoogle Scholar
Lacey, J.H., Jones, M.D., 2018. Quantitative reconstruction of Early Holocene and last glacial climate on the Balkan Peninsula using coupled hydrological and isotope mass balance modeling. Quaternary Science Reviews 202, 109121.CrossRefGoogle Scholar
Landhausser, S.M., Silins, U., Lieffers, V.J., Liu, W., 2003. Response of Populus tremuloides, Populus balsamifera, Betula papyrifera and Picea glauca seedlings to low soil temperature and water-logged soil conditions. Scandinavian Journal of Forest Research 18, 391400.CrossRefGoogle Scholar
Leng, M.J., Barker, P.A., 2006. A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth-Science Reviews 75, 527.CrossRefGoogle Scholar
Leng, M.J., Sloane, H.J., 2008. Combined oxygen and silicon isotope analysis of biogenic silica. Journal of Quaternary Science 23, 313319.CrossRefGoogle Scholar
Liljedahl, A.K., Gädeke, A., O'Neel, S., Gatesman, T.A., Douglas, T.A., 2017. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophysical Research Letters 44, 68766885.CrossRefGoogle Scholar
Linacre, E., 1992. Climate Data and Resources: a Reference and Guide. Routledge, London.Google Scholar
Lotter, A.F., Hofmann, G., 2003. The development of the late-glacial and Holocene diatom flora in Lake Sedmo Rilsko (Rila Mountains, Bulgaria). In: Tonkov, S. (Ed.), Aspects of Palynology and Palaeoecology. Pensoft Publishers, Moscow, pp. 171183.Google Scholar
Mann, D.G., McDonald, S.M., Mayer, M.M., Droop, S.J.M., Chepurnov, V.A., Loke, R.E., Ciobanu, A., Du Buf, J.M.H., 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43, 459482.CrossRefGoogle Scholar
McKay, N.P., Emile-Geay, J., Khinder, D., 2021. GeoChronR—an R package to model, analyze and visualize age-uncertain paleoscientific data. Geochronology 3, 149169.CrossRefGoogle Scholar
McKay, N.P., Kaufman, D.S., 2009. Holocene climate and glacier variability at Hallet and Greyling lakes, Chugach Mountains, south-central Alaska. Journal of Paleolimnology 41, 143159.CrossRefGoogle Scholar
McKay, N.P., Kaufman, D.S., Michelutti, N., 2008. Biogenic silica concentration as a high resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. Geophysical Research Letters 35, L05709.CrossRefGoogle Scholar
McLaughlin, R.B., Stone, J.L., 1986. Some Late Pleistocene diatoms of the Kenai Peninsula, Alaska. Nova Hedwigia 82, 1148.Google Scholar
Menicucci, A.J., Spero, H.J., Matthews, J., Parikh, S.J., 2017. Influence of exchangeable oxygen on biogenic silica oxygen isotope data. Chemical Geology 466, 710721.CrossRefGoogle Scholar
Messender, A.S., 1980. Spruce plantation effects on soil moisture and chemical element distribution. Forest Ecology and Management 3, 113125.CrossRefGoogle Scholar
Mock, C.J., Bartlein, P.J., Anderson, P.M., 1998. Atmospheric circulation patterns and spatial climatic variations in Beringia. International Journal of Climatology 10, 10851104.3.0.CO;2-K>CrossRefGoogle Scholar
Morley, D.W., Leng, M.J., Mackay, A.W., Sloane, H J., Rioual, P., Battarbee, R.W., 2004. Cleaning of lake sediment samples for diatom oxygen isotope analysis. Journal of Paleolimnology 31, 391401.CrossRefGoogle Scholar
Mortlock, R.A., Froelich, P.N., 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research 36, 14151426.CrossRefGoogle Scholar
Moschen, R., Lücke, A., Schleser, G.H., 2005. Sensitivity of biogenic silica oxygen isotopes to changes in surface water temperature and paleoclimatology. Geophysical Research Letters 32, L07708.CrossRefGoogle Scholar
Nesje, A., Dahl, S.O., 2001. The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Science 16, 155166.Google Scholar
Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Henry, M., Stevens, H., 2007. The vegan package. Community Ecology Package 10, 631637.Google Scholar
Orlova, M.A., Lukina, N.V., Smirnov, V.E., Artemkina, N.A., 2016. The influence of spruce on acidity and nutrient content in soils of northern Taiga dwarf shrub-green moss spruce forests. Eurasian Soil Science 49, 12761287.CrossRefGoogle Scholar
Overland, J.E., Adams, J.M., Bond, N.A., 1999. Decadal variability of the Aleutian Low and its relation to high-latitude circulation. Journal of Climate 12, 15421548.2.0.CO;2>CrossRefGoogle Scholar
Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos 77, 379.CrossRefGoogle Scholar
Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A—Mathematical, Physical, and Engineering Sciences 193, 120145.Google Scholar
Perren, B.B., Axford, Y., Kaufman, D.S., 2017. Alder, nitrogen, and lake ecology: terrestrial-aquatic linkages in the postglacial history of Lone Spruce Pond, southwestern Alaska. PLoS ONE 12(1), e0169106.CrossRefGoogle ScholarPubMed
Philippsen, B., 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1, 24.CrossRefGoogle Scholar
Porter, T.J., Pisaric, M.F.J., Field, R.D., Kokelj, T.W.D., deMontigny, P., Healy, R., LeGrande, A.N., 2014. Spring-summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree-rings from the Mackenzie Delta, northwestern Canada. Climate Dynamics 42, 771785.CrossRefGoogle Scholar
Pukacz, A., Pełechaty, M., Frankowski, M., 2016. Depth-dependence and monthly variability of charophyte biomass production: consequences for the precipitation of calcium carbonate in a shallow Chara-lake. Environmental Science and Pollution Research 23, 2243322442.CrossRefGoogle Scholar
Ranger, J., Nys, C., 1994. The effect of spruce (Picea abies Karst.) on soil development: an analytical and experimental approach. European Journal of Soil Science 45, 193204.CrossRefGoogle Scholar
Reger, R.D., Combellick, R.A., Brigham-Grette, J., 1995. Update of latest Wisconsin events in the upper Cook Inlet region, southcentral Alaska. In: Combellick, R.A., Tannian, F. (Eds.), Short Notes on Alaska Geology 1995. Alaska Division of Geological & Geophysical Surveys Professional Report 111, p. 4553.Google Scholar
Reger, R.D., Lowell, T., Evenson, E.B., 2011. Discussion of “Late Quaternary megafloods from Glacial Lake Atna, Southcentral Alaska, U.S.A.” Quaternary Research 75, 301302.CrossRefGoogle Scholar
Reger, R.D., Sturmann, A.G., Berg, E.E., Burns, P.A.C., 2007. A Guide to the Late Quaternary History of Northern and Western Kenai Peninsula, Alaska: Guidebook 8. State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys, Anchorage, Alaska.CrossRefGoogle Scholar
Reger, R.D., Updike, R.G., 1983. Upper Cook Inlet region and the Matanuska Valley. In: Péwé, T.L., Reger, R.D. (Eds.), Guidebook to Permafrost and Quaternary Geology Along the Richardson and Glenn Highways Between Fairbanks and Anchorage, Alaska. Alaska Division of Geological & Geophysical Surveys Guidebook 1, p. 185263, 1 sheet, scale 1:250,000.Google Scholar
Reimer, P., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., et al. , 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Rein, B., Sirocko, F., 2002. In-situ reflectance spectroscopy-analyzing techniques for high resolution pigment logging in sediment cores. International Journal of Earth Science 91, 950954.CrossRefGoogle Scholar
Rodionov, S.N., Bond, N.A., Overland, J.E., 2007. The Aleutian Low, storm tracks, and winter climate variability. Deep-Sea Research II 54, 25602577.CrossRefGoogle Scholar
Santos, G.M., Moore, R.B., Southon, J.R., Griffin, S., Hinger, E., Zhang, D., 2007. AMS 14C sample preparation at the KCCAMS/UCI facility: status report and performance of small samples. Radiocarbon 49, 255269.CrossRefGoogle Scholar
Schiff, C., Kaufman, D.S., Wolfe, A.P., Dodd, J., Sharp, Z., 2009. Late Holocene storm-trajectory changes inferred from the oxygen isotope composition of lake diatoms, south Alaska. Journal of Paleolimnology 41, 189208.CrossRefGoogle Scholar
Shaftel, R.S., King, R.S., Back, J.A., 2011. Alder cover drives nitrogen availability in Kenai lowland headwater streams, Alaska. Biogeochemistry 107, 135148.CrossRefGoogle Scholar
Shemesh, A., Charles, C.D., Fairbanks, R.G., 1992. Oxygen isotopes in biogenic silica: global changes in ocean temperature and isotopic composition. Science 256, 14341436.CrossRefGoogle ScholarPubMed
Shuman, B., 2003. Controls on loss-on-ignition variation in cores from two shallow lakes in the northeastern United States. Journal of Paleolimnology 30, 371385.CrossRefGoogle Scholar
Singarayer, J.S., Valdes, P.J., 2010. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quaternary Science Reviews 29, 4355.CrossRefGoogle Scholar
Šmejkalová, T., Edwards, M., Dash, J., 2016. Arctic lakes show strong decadal trend in earlier spring ice-out. Scientific Reports 6, 38449.CrossRefGoogle ScholarPubMed
Spaulding, S.A., Bishop, I.W., Edlund, M.B., Lee, S., Potapova, M., 2020. Diatoms of North America. https://diatoms.org/. [accessed 24 Dec 2020]Google Scholar
Steinman, B.A., Rosenmeier, M.F., Abbott, M.B., Bain, D.J., 2010. The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models: application to paleoclimate studies in the upper Columbia River basin. Limnology and Oceanography 55, 22312245.CrossRefGoogle Scholar
ter Braak, C.J.F., Prentice, I.C., 1988. A theory of gradient analysis. Advances in Ecological Research 18, 271e317.CrossRefGoogle Scholar
Tyler, J.J., Sloane, H.J., Rickaby, R.E.M., Cox, E.J., Leng, M.J., 2017. Post-mortem oxygen isotope exchange within cultured diatom silica. Rapid Communications in Mass Spectrometry 31, 17491760.CrossRefGoogle ScholarPubMed
Valentino, J.D., Owen, L.A., Spotila, J.A., Cesta, J.M., Caffee, M.W., 2021. Timing and extent of Late Pleistocene glaciation in the Chugach Mountains, Alaska. Quaternary Research 101, 205224.CrossRefGoogle Scholar
Vallentyne, J.R., 1957. Principles of modern limnology. American Scientist 45, 218244.Google Scholar
Van den Berg, M.S., Coops, H., Simons, J., 2001. Propagule bank buildup of Chara aspera and its significance for colonization of a shallow lake. Hydrobiologia 462, 917.CrossRefGoogle Scholar
Ventura, V., Paciorek, C.J., Risbey, J.S., 2004. Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. Journal of Climate 17, 43434356.CrossRefGoogle Scholar
Wallace, K.L., Coombs, M.L., Hayden, L.A., Waythomas, C.F., 2014. Significance of a near-source tephra-stratigraphic sequence to the eruptive history of Hayes volcano, south-central Alaska. US Geological Survey Scientific Investigations Report 2014-5133, 32 pp. https://doi.org/10.3133/sir20145133.Google Scholar
Wang, L., Mackay, A.W., Leng, M.J., Rioual, P., Panizzo, V.N., Lu, H., Gu, Z., Chu, G., Han, J., Kendrick, C.P., 2013. Influence of the ratio of planktonic to benthic diatoms on lacustrine organic matter δ13C from Erlongwan maar lake, northeast China. Organic Geochemistry 54, 6268.CrossRefGoogle Scholar
Wiedmer, M., Montgomery, D.R., Gillespie, A.R., Greenberg, H., 2010. Late Quaternary megafloods from Glacial Lake Atna, southcentral Alaska, U.S.A. Quaternary Science Reviews 73, 413424.Google Scholar
Wolfe, A.P., Vinebrooke, R.D., Michelutti, N., Rivard, B., Das, B., 2006. Experimental calibration of lake-sediment spectral reflectance to chlorophyll-a concentrations: methodology and paleolimnological validation. Journal of Paleolimnology 36, 91100.CrossRefGoogle Scholar
Wolin, J.A., Duthie, H.C., 1999. Diatoms as indicators of water level change in freshwater lakes. In: Smol, J.P., Stoermer, E.F. (Eds.), The Diatoms: Application for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, United Kingdom, pp. 183202.CrossRefGoogle Scholar
Wood, T.S., 2001. Bryozoans. In: Thorp, J.H., Covich, A.P. (Eds.), Ecology and Classification of North American Freshwater Invertebrates, 2nd Edition. Elsevier, Amsterdam, The Netherlands, pp. 505525.CrossRefGoogle Scholar
Wrobleski, E.A., 2021. Multi-Proxy Evidence for Climatic and Environmental Change During the Late Glacial and Holocene at Kelly Lake, Kenai Peninsula, Alaska. Master's thesis, Northern Arizona University, Flagstaff, Arizona. ProQuest ID 28714852, https://openknowledge.nau.edu/id/eprint/5706/Google Scholar
Yu, Z., Walker, K.N., Evenson, E.B., Hajdas, I., 2008. Lateglacial and Early Holocene climate oscillations in Matanuska Valley, south-central Alaska. Quaternary Science Reviews 27, 148161.CrossRefGoogle Scholar
Zhao, Y., Sayer, C.D., Birks, H.H., Hughes, M., Peglar, S.M., 2006. Spatial representation of aquatic vegetation by macrofossils and pollen in a small and shallow lake. Journal of Paleolimnology 35, 335350.CrossRefGoogle Scholar
Supplementary material: File

Broadman et al. supplementary material

Broadman et al. supplementary material 1

Download Broadman et al. supplementary material(File)
File 1.4 MB
Supplementary material: PDF

Broadman et al. supplementary material

Broadman et al. supplementary material 2

Download Broadman et al. supplementary material(PDF)
PDF 7.3 MB