Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T19:42:29.396Z Has data issue: false hasContentIssue false

Rapid age assessment of glacial landforms in the Pyrenees using Schmidt hammer exposure dating (SHED)

Published online by Cambridge University Press:  02 April 2018

Matt D. Tomkins*
Affiliation:
Cryosphere Research at Manchester, Department of Geography, University of Manchester, ManchesterM13 9PL, United Kingdom
Jason M. Dortch
Affiliation:
Cryosphere Research at Manchester, Department of Geography, University of Manchester, ManchesterM13 9PL, United Kingdom Kentucky Geological Survey, 228 Mining and Mineral Resources Building, University of Kentucky, Lexington, Kentucky40506, USA
Philip D. Hughes
Affiliation:
Cryosphere Research at Manchester, Department of Geography, University of Manchester, ManchesterM13 9PL, United Kingdom
Jonny J. Huck
Affiliation:
Cryosphere Research at Manchester, Department of Geography, University of Manchester, ManchesterM13 9PL, United Kingdom
Andrew G. Stimson
Affiliation:
Cryosphere Research at Manchester, Department of Geography, University of Manchester, ManchesterM13 9PL, United Kingdom
Magali Delmas
Affiliation:
Université de Perpignan Via-Domitia, UMR 7194 CNRS Histoire Naturelle de l’Homme Préhistorique, 66860 Perpignan Cedex, France
Marc Calvet
Affiliation:
Université de Perpignan Via-Domitia, UMR 7194 CNRS Histoire Naturelle de l’Homme Préhistorique, 66860 Perpignan Cedex, France
Raimon Pallàs
Affiliation:
Departament de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, 08028Barcelona, Spain
*
*Corresponding author at: Cryosphere Research at Manchester, Department of Geography, University of Manchester, Manchester M13 9PL, United Kingdom. E-mail address: [email protected] (M.D. Tomkins).

Abstract

Schmidt hammer (SH) sampling of 54 10Be-dated granite surfaces from the Pyrenees reveals a clear relationship between exposure and weathering through time (n=52, R2=0.96, P<0.01) and permits the use of the SH as a numerical dating tool. To test this 10Be-SH calibration curve, 100 surfaces were sampled from five ice-front positions in the Têt catchment, eastern Pyrenees, with results verified against independent 10Be and 14C ages. Gaussian modelling differentiates Holocene (9.4±0.6 ka), Younger Dryas (12.6±0.9 ka), Oldest Dryas (16.1±0.5 ka), last glacial maximum (LGM; 24.8±0.9 ka) and Würmian maximum ice extent stages (MIE; 40.9±1.1 ka). These data confirm comparable glacier lengths during the LGM and MIE (~300 m difference), in contrast to evidence from the western Pyrenees (≥15 km), reflecting the relative influence of Atlantic and Mediterranean climates. Moreover, Pyrenean glaciers advanced significantly during the LGM, with a local maximum at ~25 ka, driven by growth of the Laurentide Ice Sheet, southward advection of the polar front, and a solar radiation minimum in the Northern Hemisphere. This calibration curve is available online (http://shed.earth) to enable wider application of this method throughout the Pyrenees.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, R.B., Brook, E.J., Anandakrishnan, S., 2002. A northern lead in the orbital band: north–south phasing of Ice-Age events. Quaternary Science Reviews 21, 431441.Google Scholar
André, M.F., 2002. Rates of postglacial rock weathering on glacially scoured outcrops (Abisko-Riksgränsen Area, 68°N). Geografiska Annaler, Series A: Physical Geography 84, 139150.CrossRefGoogle Scholar
Aydin, A., 2009. The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014. International Journal of Rock Mechanics and Mining Sciences 46, 627–634.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Barr, I.D., Roberson, S., Flood, R., Dortch, J., 2017. Younger Dryas glaciers and climate in the Mourne Mountains, Northern Ireland. Journal of Quaternary Science 32, 104115.Google Scholar
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198.Google Scholar
Calvet, M., Delmas, M., Gunnell, Y., Bourle, D., 2011. Recent advances in research on Quaternary glaciations in the Pyrenees. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Sciences, Vol. 15. Elsevier, Amsterdam, pp. 127139.CrossRefGoogle Scholar
Cěrná, B., Engel, Z., 2011. Surface and sub-surface Schmidt hammer rebound value variation for a granite outcrop. Earth Surface Processes and Landforms 36, 170179.Google Scholar
Colman, S.M., 1981. Rock-weathering rates as functions of time. Quaternary Research 264, 250264.Google Scholar
Crest, Y., Delmas, M., Braucher, R., Gunnell, Y., Calvet, M., ASTER Team. 2017. Cirques have growth spurts during deglacial and interglacial periods: evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees. Geomorphology 278, 6077.Google Scholar
Delmas, M., 2015. The last maximum ice extent and subsequent deglaciation of the Pyrenees: an overview of recent research. Cuadernos de Investigación Geográfica 41, 109137.Google Scholar
Delmas, M., Braucher, R., Gunnell, Y., Guillou, V., Calvet, M., Bourlès, D., 2015. Constraints on Pleistocene glaciofluvial terrace age and related soil chronosequence features from vertical 10Be profiles in the Ariège River catchment (Pyrenees, France). Global and Planetary Change 132, 3953.Google Scholar
Delmas, M., Calvet, M., Gunnell, Y., Braucher, R., Bourlès, D., 2011. Palaeogeography and 10Be exposure-age chronology of Middle and Late Pleistocene glacier systems in the northern Pyrenees: implications for reconstructing regional palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 109122.Google Scholar
Delmas, M., Gunnell, Y., Braucher, R., Calvet, M., Bourlès, D., 2008. Exposure age chronology of the last glaciation in the eastern Pyrenees. Quaternary Research 69, 231241.Google Scholar
Dortch, J.M., Hughes, P.D., Tomkins, M.D., 2016. Schmidt hammer exposure dating (SHED): calibration boulder of Tomkins et al. (2016). Quaternary Geochronology 35, 6768.Google Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W., 2013. Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen. Quaternary Science Reviews 78, 188208.CrossRefGoogle Scholar
Engel, Z., 2007. Measurement and age assignment of intact rock strength in the Krkonoše Mountains, Czech Republic. Zeitschrift für Geomorphologie 51, 6980.Google Scholar
Engel, Z., Traczyk, A., Braucher, R., Woronko, B., Kŕížek, M., 2011. Use of 10Be exposure ages and Schmidt hammer data for correlation of moraines in the Krkonoše Mountains, Poland/Czech Republic. Zeitschrift für Geomorphologie 55, 175196.Google Scholar
Gunnell, Y., Calvet, M., Brichau, S., Carter, A., Aguilar, J.-P., Zeyen, H., 2009. Low long-term erosion rates in high-energy mountain belts: insights from thermo- and biochronology in the Eastern Pyrenees. Earth and Planetary Science Letters 278, 208218.Google Scholar
Hallet, B., Putkonen, J., 1994. Surface dating of dynamic landforms: young boulders on aging moraines. Science 265, 937940.CrossRefGoogle ScholarPubMed
Heyman, J., Stroeven, A.P., Harbor, J.M., Caffee, M.W., 2011. Too young or too old: evaluating cosmogenic exposure dating based on analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180.Google Scholar
Hughes, A.L., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets – a chronological database and time‐slice reconstruction, DATED‐1. Boreas 45, 145.Google Scholar
Hughes, P.D., Gibbard, P.L., 2015. A stratigraphical basis for the Last Glacial Maximum (LGM). Quaternary International 383, 174185.Google Scholar
Jalut, G., Monserrat Marti, J., Fontugne, M., Delibrias, G., Vilaplana, J.M., Julia, R., 1992. Glacial to interglacial vegetation changes in the northern and southern Pyrenees: deglaciation, vegetation cover and chronology. Quaternary Science Review 11, 449480.Google Scholar
Katz, O., Reches, Z., Roegiers, J.-C., 2000. Evaluation of mechanical rock properties using the Schmidt Hammer. International Journal of Rock Mechanics and Mining Sciences 37, 723728.Google Scholar
Kłapyta, P., 2013. Application of Schmidt hammer relative age dating to Late Pleistocene moraines and rock glaciers in the Western Tatra Mountains, Slovakia. Catena 111, 104121.Google Scholar
Kuhlemann, J., Rohling, E.J., Krumrei, I., Kubik, P., Ivy-Ochs, S., Kucera, M., 2008. Regional synthesis of Mediterranean atmospheric circulation during the Last Glacial Maximum. Science 321, 13381340.Google Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.Google Scholar
Lewis, C.J., Mcdonald, E.V, Sancho, C., Peña, J.L., Rhodes, E.J., 2009. Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change 67, 141152.Google Scholar
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R.L., Frisia, S., Hof, F., Müller, W., 2015. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nature Communications 6, 6344.Google Scholar
Matthews, J.A., Owen, G., 2008. Endolithic lichens, rapid biological weathering and Schmidt hammer r-values on recently exposed rock surfaces: Storbreen glacier foreland, Jotunheimen, Norway. Geografiska Annaler, Series A: Physical Geography 90, 287297.CrossRefGoogle Scholar
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., Piccin, A., 2017. The Alpine LGM in the boreal ice-sheets game. Scientific Reports 7, 18.Google Scholar
Moses, C., Robinson, D., Barlow, J., 2014. Methods for measuring rock surface weathering and erosion. Earth-Science Reviews 135, 141161.Google Scholar
Murari, M.K., Owen, L.A., Dortch, J.M., Caffee, M.W., Dietsch, C., Fuchs, M., Haneberg, W.C., Sharma, M.C., Townsend-Small, A., 2014. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen. Quaternary Science Reviews 88, 159182.Google Scholar
Niedzielski, T., Migoń, P., Placek, A., 2009. A minimum sample size required from Schmidt hammer measurements. Earth Surface Processes and Landforms 34, 17131725.Google Scholar
Ortuño, M., Martí, A., Martín-Closas, C., Jiménez-Moreno, G., Martinetto, E., Santanach, P., 2013. Palaeoenvironments of the Late Miocene Prüedo Basin: implications for the uplift of the Central Pyrenees. Journal of the Geological Society 170, 7992.Google Scholar
Palacios, D., García-Ruiz, J.M., Andrés, N., Schimmelpfennig, I., Campos, N., Léanni, L., ASTER Team. 2017. Deglaciation in the central Pyrenees during the Pleistocene–Holocene transition: timing and geomorphological significance. Quaternary Science Reviews 162, 111127.CrossRefGoogle Scholar
Pallàs, R., Rodés, Á., Braucher, R., Bourlès, D., Delmas, M., Calvet, M., Gunnell, Y., 2010. Small, isolated glacial catchments as priority targets for cosmogenic surface exposure dating of Pleistocene climate fluctuations, southeastern Pyrenees. Geology 38, 891894.CrossRefGoogle Scholar
Pallàs, R., Rodés, Á., Braucher, R., Carcaillet, J., Ortuño, M., Bordonau, J., Bourlès., D., Vilaplana, J. M., Masana, E., Santanach, P., 2006. Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central Pyrenees. Quaternary Science Reviews 25, 29372963.CrossRefGoogle Scholar
Proceq, 2004. Operating Instructions Betonprüfhammer N/NR- L/LR. Proceq, Schwerzenbach, Switzerland.Google Scholar
Putkonen, J., Swanson, T., 2003. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, 255261.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al., 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Riebe, C.S., Kirchner, J.W., Finkel, R.C., 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters 224, 547562.Google Scholar
Stahl, T., Winkler, S., Quigley, M., Bebbington, M., Duffy, B., Duke, D., 2013. Schmidt hammer exposure‐age dating (SHD) of late quaternary fluvial terraces in New Zealand. Earth Surface Processes and Landforms 38, 18381850.Google Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.CrossRefGoogle Scholar
Sumner, P., Nel, W., 2002. The effect of rock moisture on Schmidt hammer rebound: tests on rock samples from Marion Island and South Africa. Earth Surface Processes and Landforms 27, 11371142.Google Scholar
Tomkins, M.D., Dortch, J.M., Hughes, P.D., 2016. Schmidt Hammer exposure dating (SHED): establishment and implications for the retreat of the last British Ice Sheet. Quaternary Geochronology 33, 4660.Google Scholar
Tomkins, M.D., Huck, J.J., Dortch, J.M., Hughes, P.D., Kirkbride, M., Barr, I., 2018. Schmidt Hammer exposure dating (SHED): calibration procedures, new exposure age data and an online calculator. Quaternary Geochronology 44, 5562.Google Scholar
Ullman, D.J., Carlson, A.E., LeGrande, A.N., Anslow, F.S., Moore, A.K., Caffee, M., Syverson, K.M., Licciardi, J.M., 2015. Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. Geology 43, 2326.CrossRefGoogle Scholar
Viles, H., Goudie, A., Grab, S., Lalley, J., 2011. The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surface Processes and Landforms 36, 320333.Google Scholar
White, A.F., Brantley, S.L., 2003. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chemical Geology 202, 479506.Google Scholar
Williams, R.B.G., Robinson, D.A., 1983. The effect of surface texture on the determination of the surface hardness of rock using the Schmidt hammer. Earth Surface Processes and Landforms 8, 289292.Google Scholar
Supplementary material: File

Tomkins et al. supplementary material

Tomkins et al. supplementary material 1

Download Tomkins et al. supplementary material(File)
File 23.3 KB