Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T00:35:48.776Z Has data issue: false hasContentIssue false

Quaternary marine ingressions as indicated by hydrogeochemical evidence in the semi-confined aquifer of the littoral of the Río de la Plata, Argentina

Published online by Cambridge University Press:  28 June 2017

Lucia Santucci
Affiliation:
Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Diagonal 113 #275, 1900 La Plata, Buenos Aires, Argentina
Eleonora Carol*
Affiliation:
Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Diagonal 113 #275, 1900 La Plata, Buenos Aires, Argentina
Eduardo Kruse
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Hidrología General de la Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Calle 64 #3, 1900 La Plata, Buenos Aires, Argentina
*
*Corresponding author at: Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Diagonal 113 #275, 1900, La Plata, Buenos Aires, Argentina. E-mail address: [email protected] (E. Carol)

Abstract

The Quaternary is characterized by the occurrence of significant climate oscillations that led to noticeable sea-level changes. On the basis of hydrochemical indicators, the origin of the water salinity in the semi-confined aquifer in the region of the middle Río de la Plata estuary, Argentina is determined. Exploration wells were drilled and sediments were sampled for mineralogical analysis alongside water samples collected to determine major and minor ions and environmental isotopes in the aquifer. The Plio-Pleistocene fluvial sands in which the aquifer occurs are mainly composed of grains of quartz, feldspar, and mafic minerals. The water chemistry shows Na-Cl facies with a marked increase in salinity towards the Río de la Plata. The δ 18O vs. δ 2H, Br vs. Cl, and δ 18O vs. Cl ratios clearly trend towards seawater. Minor ions, such as Si, Sr, Li, Se, Br, and Rb, were the result of the prolonged interaction between the water that occurs in the aquifer and the mineral components of its matrix. The hydrogeochemical data show the marine origin of the saline water and that the hydrogeological evolution of the area during the Quaternary is as a result of sea-level oscillations.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

American Public Health Association (APHA), 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC.Google Scholar
Appelo, C.A.J., Postma, D., 2005. Geochemistry, Groundwater and Pollution. 2nd ed. A.A. Balkema Publishers, Leiden, the Netherlands.Google Scholar
Balbir, S.S., Dontireddy, V.R., Pasupuleti, N., 1998. Isotopic fingerprints of paleoclimates during the last 30,000 years in deep confined groundwaters of Southern India. Quaternary Research 50, 252260.Google Scholar
Bouchaou, L., Michelot, J.L., Qurtobi, M., Zine, N., Gaye, C.B., Aggarwal, P.K., Vengosh, A., 2009. Origin and residence time of groundwater in the Tadla basin (Morocco) using multiple isotopic and geochemical tools. Journal of Hydrology 379, 323338.Google Scholar
Brondi, M., Dall’Aglio, M., Vitrani, F., 1973. Lithium as a pathfinder element in the large scale hydrogeochemical exploration for hydrothermal systems. Geothermics 2, 142153.CrossRefGoogle Scholar
Carol, E., Kruse, E., Laurencena, P., Rojo, A., Deluchi, M., 2012. Ionic exchange in groundwater hydrochemical evolution. Study case: the drainage basin of El Pescado creek (Buenos Aires province, Argentina). Environmental Earth Science 65, 421428.CrossRefGoogle Scholar
Dapeña, C., 2007. Isótopos ambientales livianos. Su aplicación en hidrología e hidrogeología (PhD dissertation Universidad de Buenos Aires, Buenos Aires, Argentina.Google Scholar
El Yaouti, F., El Mandour, A., Khattach, D., Benavente, J., Kaufmann, O., 2009. Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): a geostatistical, geochemical, and tomographic study. Applied Geochemistry 24, 1631.Google Scholar
Fidalgo, F., Colado, U.R., De Francesco, F.O., 1973. Sobre ingresiones marinas cuaternarias en los partidos de Castelli, Chascomús y Magdalena (Provincia de Buenos Aires.) Actas 5°V Congreso Geológico Argentino 3, 227240.Google Scholar
Fidalgo, F., De Francesco, F.O., y Pascual, R., 1975. Geología superficial de la llanura bonaerense (Argentina). 6° Congreso Geológico Argentino, Relatorio, 103138.Google Scholar
Fucks, E.E., Schnack, E.J., Aguirre, M.L., 2010. Nuevo ordenamiento estratigráfico de las secuencias marinas del sector continental de la Bahía Samborombón, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 67, 2739.Google Scholar
Gonfiantini, R., 1978. Standards for stable isotope measurements in natural compounds. Nature 271, 534536.CrossRefGoogle Scholar
Groen, J., Velstra, J., Meesters, A., 2000. Salinization processes in paleowaters in coastal sediments of Suriname: evidence from d37Cl analysis and diffusion modelling. Journal of Hydrology 234, 120.Google Scholar
Kim, Y., Lee, K., Koh, D., Lee, D., Lee, S., Park, W., Koh, G., Woo, N., 2003. Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. Journal of Hydrology 270, 282294.CrossRefGoogle Scholar
Kind, V.M., 2004. Desplazamiento del frente de salinidad del Río de la Plata debido al aumento del nivel medio del mar. PhD dissertation, Universidad de Buenos Aires, Buenos Aires, Argentina.Google Scholar
Kooi, H., Groen, J., 2003. Geological processes and the management of groundwater resources in coastal areas. Netherlands Journal of Geosciences 82, 3140.Google Scholar
Kooi, H., Groen, J., Leijnse, A., 2000. Modes of seawater intrusion during transgressions. Water Resources Research 36, 317320.CrossRefGoogle Scholar
Kruse, E., Carol, E., Mancuso, M., Laurencena, P., Deluchi, M., Rojo, A., 2013. Recharge assessment in an urban area: a case study of La Plata, Argentina. Hydrogeology Journal 21, 10911100.Google Scholar
Lee, S., Currell, M., Cendón, D.I., 2016. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: evidence from groundwater isotopes, and environmental significance. Science of the Total Environment 544, 9951007.Google Scholar
Lis, G., Wassenaar, L.I., Hendry, M.J., 2008. High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Analytical Chemistry 80, 287293.Google Scholar
Logan, W., Auge, M., Panarello, H., 1999. Bicarbonate, sulfate and chloride water in a shallow, clastic-dominated coastal flow system, Argentina. Ground Water 37, 287295.Google Scholar
Massee, R., Maessen, F.J.M.J., 1981. Losses of silver, arsenic, cadmium, selenium and zinc traces from distilled water and artificial sea-water by sorption on various container surfaces. Analytica Chimica Acta 127, 181193.CrossRefGoogle Scholar
Morrissey, S.K., Clark, J.F., Bennett, M., Richardson, E., Stute, M., 2010. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise. Nature Geoscience 3, 683687.CrossRefGoogle Scholar
Panarello, H., Paricia, C., 1984. Isótopos del oxígeno en hidrogeología e hidrología. Primeros valores en agua de lluvia de Buenos Aires. Revista de la Asociación. Geológica Argentina 34, 311.Google Scholar
Phillips, F.M., Peeters, L.A., Tansey, M.K., Stanley, N.D., 1986. Paleoclimatic inferences from an isotopic investigation of groundwater in the Central San Juan Basin, New Mexico. Quaternary Research 26, 179193.Google Scholar
Post, V.E.A., Groen, J., Kooi, H., Person, M., Ge, S., Edmunds, W.M., 2013. Offshore fresh groundwater reserves as a global phenomenon. Nature 501, 7178.CrossRefGoogle Scholar
Rohling, E.J., Grant, K., Hemleben, Ch., Siddal, M., Hoogakker, B.A.A., Bolshaw, M., Kucera, M., 2008. High rates of sea-level rise during the last interglacial period. Nature Geoscience 1, 3842.CrossRefGoogle Scholar
Schnack, E., Isla, F., De Francesco, F., Fucks, E., 2005. Estratigrafía del Cuaternario Marino Tardío en la Provincia de Buenos Aires. In: De Barrio, R., Etcheverry, R., Caballé, M., Llambías, E. (Eds.), Geología y Recursos Minerales de la provincia de Buenos Aires, 16° Congreso Geológico Argentino, Relatorio, Universidad de la Plata, Asociación Geológica Argentina, Buenos Aires, pp. 159182.Google Scholar
Shackleton, N., 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183190.CrossRefGoogle Scholar
Sola, F., Vallejos, A., Daniele, L., Pulido-Bosch, A., 2014. Identification of a Holocene aquifer–lagoon system using hydrogeochemical data. Quaternary Research 82, 121131.CrossRefGoogle Scholar
Somay, M.A., Gemici, Ü., 2009. Assessment of the salinization process at the coastal area with hydrogeochemical tools and geographical information systems (GIS): Selçuk plain, Izmir, Turkey. Water, Air, and Soil Pollution 201, 5574.Google Scholar
Tulipano, L., Fidelibus, M.D., 1984. Geochemical characteristics of Apulian coastal springs (southern Italy) related to mixing processes of ground waters with seawater having different residence time in to the aquifer. In: Tsakiris, G. (Ed.), Proceedings, 5th International Conference on Water Resources Planning and Management: Water in the year 2000, Athens, 2.55–2.67.Google Scholar
Vengosh, A., 2003. Salinization and saline environments. In Holland, H.D., Turekian, K.K. (Eds.), Environmental Geochemistry. Treatise on Geochemistry 9. Elsevier, New York, pp. 333365.Google Scholar
Wang, Y., Jiao, J.J., 2012. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. Journal of Hydrology 438, 112124.Google Scholar
Werner, A.D., Bakker, M., Post, V.E.A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., Barry, D.A., 2013. Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in Water Resources 51, 326.Google Scholar