Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T08:13:55.088Z Has data issue: false hasContentIssue false

Quantifying episodic erosion and transient storage on the western margin of the Tibetan Plateau, upper Indus River

Published online by Cambridge University Press:  16 November 2017

Tara N. Jonell*
Affiliation:
School of Geosciences, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA
Lewis A. Owen
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221, USA
Andrew Carter
Affiliation:
Department of Earth and Planetary Sciences, Birkbeck College, London WC1E 7HX, United Kingdom
Jean-Luc Schwenniger
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, United Kingdom
Peter D. Clift
Affiliation:
Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA
*
*Corresponding author at: School of Geosciences, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA. E-mail address: [email protected] (T.N. Jonell).

Abstract

Transient storage and erosion of valley fills, or sediment buffering, is a fundamental but poorly quantified process that may significantly bias fluvial sediment budgets and marine archives used for paleoclimatic and tectonic reconstructions. Prolific sediment buffering is now recognized to occur within the mountainous upper Indus River headwaters and is quantified here for the first time using optically stimulated luminescence dating, petrography, detrital zircon U-Pb geochronology, and morphometric analysis to define the timing, provenance, and volumes of prominent valley fills. This study finds that climatically modulated sediment buffering occurs over 103–104 yr time scales and results in biases in sediment compositions and volumes. Increased sediment storage coincides with strong phases of summer monsoon and winter westerlies precipitation over the late Pleistocene (32–25 ka) and mid-Holocene (~8–6 ka), followed by incision and erosion with monsoon weakening. Glacial erosion and periglacial frost-cracking drive sediment production, and monsoonal precipitation mediates sediment evacuation, in contrast to the arid Transhimalaya and monsoonal frontal Himalaya. Plateau interior basins, although volumetrically large, lack transport capacity and are consequently isolated from the modern Indus River drainage. Marginal plateau catchments that both efficiently produce and evacuate sediment may regulate the overall compositions and volumes of exported sediment from the Himalayan rain shadow.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alizai, A., Carter, A., Clift, P.D., VanLaningham, S., Williams, J.C., Kumar, R., 2011. Sediment provenance, reworking and transport processes in the Indus River by U–Pb dating of detrital zircon grains. Global and Planetary Change 76, 3355.CrossRefGoogle Scholar
Allen, P.A., 2008. Time scales of tectonic landscapes and their sediment routing systems. Geological Society, London, Special Publications 296, 728.Google Scholar
Allison, M., Kuehl, S., Martin, T., Hassan, A., 1998. Importance of flood-plain sedimentation for river sediment budgets and terrigenous input to the oceans: insights from the Brahmaputra-Jamuna River. Geology 26, 175178.2.3.CO;2>CrossRefGoogle Scholar
Amidon, W.H., Burbank, D.W., Gehrels, G.E., 2005. U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth and Planetary Science Letters 235, 244260.CrossRefGoogle Scholar
Armitage, J.J., Duller, R.A., Whittaker, A.C., Allen, P.A., 2011. Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience 4, 231235.CrossRefGoogle Scholar
Bailey, R.M., Arnold, L.J., 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 24752502.CrossRefGoogle Scholar
Bajracharya, S., Shrestha, F., Bajracharya, S., Maharjan, S., & Guo, W. 2014. GLIMS Glacier Database. Boulder, CO, (15 April 2015). National Snow and Ice Data Center. doi: http://dx.doi.org/10.7265/N5V98602.CrossRefGoogle Scholar
Benn, D.I., Owen, L.A., 1998. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. Journal of the Geological Society 155, 353363.CrossRefGoogle Scholar
Berger, A., Loutre, M.-F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology 200, 155170.CrossRefGoogle Scholar
Blöthe, J.H., Korup, O., 2013. Millennial lag times in the Himalayan sediment routing system. Earth and Planetary Science Letters 382, 3846.CrossRefGoogle Scholar
Blöthe, J.H., Munack, H., Korup, O., Fülling, A., Garzanti, E., Resentini, A., Kubik, P.W., 2014. Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quaternary Science Reviews 94, 102119.CrossRefGoogle Scholar
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.G., Frey, H., et al. 2012. The state and fate of Himalayan glaciers. Science 336, 310314.CrossRefGoogle ScholarPubMed
Bookhagen, B., Burbank, D.W., 2006. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters 33, L08405. http://dx.doi.org/10.1029/2006GL026037.Google Scholar
Bookhagen, B., Burbank, D.W., 2010. Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface 115, F03019. http://dx.doi.org/10.1029/2009JF001426.CrossRefGoogle Scholar
Bookhagen, B., Fleitmann, D., Nishiizumi, K., Strecker, M., Thiede, R., 2006. Holocene monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India. Geology 34, 601604.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R.C., Strecker, M.R., 2005a. Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth and Planetary Science Letters 231, 131146.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R.C., Strecker, M.R., 2005b. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 149152.CrossRefGoogle Scholar
Bull, W.L., Knuepfer, P.L.K., 1987. Adjustments by the Charwell River, New Zealand, to uplift and climatic changes. Geomorphology 1, 1532.CrossRefGoogle Scholar
Burbank, D.W., Bookhagen, B., Gabet, E.J., Putkonen, J., 2012. Modern climate and erosion in the Himalaya. Comptes Rendus Geoscience 344, 610626.CrossRefGoogle Scholar
Burbank, D.W., Fort, M.B., 1985. Bedrock control on glacial limits: examples from the Ladakh and Zanskar ranges, north-western Himalaya, India. Journal of Glaciology 31, 143149.CrossRefGoogle Scholar
Castelltort, S., Van Den Driessche, J., 2003. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record? Sedimentary Geology 157, 313.CrossRefGoogle Scholar
Cawood, P.A., Johnson, M.R., Nemchin, A.A., 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth and Planetary Science Letters 255, 7084.CrossRefGoogle Scholar
Clift, P.D., 2006. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters 241, 571580.CrossRefGoogle Scholar
Clift, P.D., Carter, A., Krol, M., Kirby, E., 2002. Constraints on India-Eurasia collision in the Arabian Sea region taken from the Indus Group, Ladakh Himalaya, India. In: Clift, P.D., Kroon, D., Gaedicke, C., Craig, J. (Eds.), The Tectonic and Climatic Evolution of the Arabian Sea Region. Geological Society. London, Special Publications 195, 97116.Google Scholar
Clift, P.D., Giosan, L., 2014. Sediment fluxes and buffering in the post‐glacial Indus Basin. Basin Research 26, 369386.CrossRefGoogle Scholar
Clift, P.D., Giosan, L., Blusztajn, J., Campbell, I.H., Allen, C.M., Pringle, M., Tabrez, A., et al. 2008. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology 36, 7982.CrossRefGoogle Scholar
Clift, P.D., Plumb, R.A., 2008. The Asian Monsoon: Causes, History and Effects. Cambridge University Press, Cambridge.Google Scholar
Clift, P.D., Shimizu, N., Layne, G.D., Blusztajn, J.S., Gaedicke, C., Schlüter, H.U., Clark, M.K., Amjad, S., 2001. Development of the Indus Fan and its significance for the erosional history of the western Himalaya and Karakoram. Geological Society of America Bulletin 113, 10391051.2.0.CO;2>CrossRefGoogle Scholar
Demske, D., Tarasov, P.E., Wünnemann, B., Riedel, F., 2009. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeography, Palaeoclimatology, Palaeoecology 279, 172185.CrossRefGoogle Scholar
Dey, S., Thiede, R.C., Schildgen, T.F., Wittmann, H., Bookhagen, B., Scherler, D., Jain, V., Strecker, M.R., 2016. Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India. Earth and Planetary Science Letters 449, 321331.CrossRefGoogle Scholar
Dèzes, P.J., Vannay, J.C., Steck, A., Bussy, F., Cosca, M., 1999. Synorogenic extension: quantitative constraints on the age and displacement of the Zanskar shear zone (northwest Himalaya). Geological Society of America Bulletin 111, 364374.2.3.CO;2>CrossRefGoogle Scholar
Dietsch, C., Dortch, J.M., Reynhout, S.A., Owen, L.A., Caffee, M.W., 2015. Very slow erosion rates and landscape preservation across the southwestern slope of the Ladakh Range, India. Earth Surface Processes and Landforms 40, 389402.CrossRefGoogle Scholar
Dortch, J.M., Dietsch, C., Owen, L.A., Caffee, M.W., Ruppert, K., 2011. Episodic fluvial incision of rivers and rock uplift in the Himalaya and Transhimalaya. Journal of the Geological Society 168, 783804.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W., 2010. Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quaternary Research 74, 132144.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W., 2013. Timing and climatic drivers for glaciation across semi-arid western Himalayan–Tibetan orogen. Quaternary Science Reviews 78, 188208.CrossRefGoogle Scholar
Duller, G.A.T., 2008. Single‐grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589612.CrossRefGoogle Scholar
Dutt, S., Gupta, A.K., Clemens, S.C., Cheng, H., Singh, R.K., Kathayat, G., Edwards, R.L., 2015. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years BP. Geophysical Research Letters 42, 55265532.CrossRefGoogle Scholar
Epard, J.-L., Steck, A., 2008. Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics 451, 242264.CrossRefGoogle Scholar
Fang, J., 1991. Lake evolution during the past 30,000 years in China, and its implications for environmental change. Quaternary Research 36, 3760.CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, 17371739.CrossRefGoogle Scholar
Fuchs, G., 1986. The geology of the Markha-Khurnak region in Ladakh (India). Jahrbuch der Geologischen Bundesanstalt Wien 128, 403437.Google Scholar
Fuchs, G., 1987. The geology of southern Zanskar (Ladakh) – evidence for the autochthony of the Tethys Zone of the Himalaya. Jahrbuch der Geologischen Bundesanstalt Wien 130, 465491.Google Scholar
Gabet, E.J., Burbank, D.W., Pratt-Sitaula, B., Putkonen, J., Bookhagen, B., 2008. Modern erosion rates in the High Himalayas of Nepal. Earth and Planetary Science Letters 267, 482494.CrossRefGoogle Scholar
Galy, A., France-Lanord, C., 2001. Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology 29, 2326.2.0.CO;2>CrossRefGoogle Scholar
Garzanti, E., Andò, S., 2007a. Heavy mineral concentration in modern sands: implications for provenance interpretation. In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals in Use. Elsevier, Amsterdam, pp. 517545.CrossRefGoogle Scholar
Garzanti, E., Andò, S., 2007b. Plate tectonics and heavy mineral suites of modern sands. In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals in Use. Elsevier, Amsterdam, pp. 741763.CrossRefGoogle Scholar
Garzanti, E., Vezzoli, G., 2003. A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research 73, 830837.CrossRefGoogle Scholar
Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., Bingyan, L., Yuanfang, L., Qing, L., Melieres, F., 1991. A 13,000-year climate record from western Tibet. Nature 353, 742745.CrossRefGoogle Scholar
Gasse, F., Fontes, J.C., Van Campo, E., Wei, K., 1996. Holocene environmental changes in Bangong Co basin (western Tibet). Part 4: discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 7992.CrossRefGoogle Scholar
Gehrels, G.E., 2014. Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences 42, 127149.CrossRefGoogle Scholar
Giosan, L., Clift, P.D., Macklin, M.G., Fuller, D.Q., Constantinescu, S., Durcan, J.A., Stevens, T., et al. 2012. Fluvial landscapes of the Harappan civilization. Proceedings of the National Academy of Sciences of the United States of America 109, E1688E1694.Google ScholarPubMed
Goodbred, S.L., 2003. Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade. Sedimentary Geology 162, 83104.CrossRefGoogle Scholar
Griffin, W.L., Powell, W.J., Pearson, N.J., O’Reilly, S.Y., 2008. GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester, P. (Ed.), Laser Ablation ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series 40. Mineralogical Association of Canada, Ottawa, pp. 204207.Google Scholar
Gupta, A.K., Anderson, D.M., Overpeck, J.T., 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to North Atlantic Ocean. Nature 421, 354357.CrossRefGoogle ScholarPubMed
Hales, T.C., Roering, J.J., 2005. Climate-controlled variations in scree production, Southern Alps, New Zealand. Geology 33, 701704.CrossRefGoogle Scholar
Hales, T.C, Roering, J.J., 2007. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. Journal of Geophysical Research: Earth Surface 112, F02033. http://dx.doi.org/10.1029/2006JF000616.CrossRefGoogle Scholar
Hartmann, H., 1987. Pflanzengesellschaften trockener Standorte aus der subalpinen und alpinen Stufe im südlichen und östlichen Ladakh. Candollea 42, 277326.Google Scholar
Hedrick, K.A., Owen, L.A., Chen, J., Robinson, A., Yuan, Z., Yang, X., Imrecke, D.B., et al. 2017. Quaternary history and landscape evolution of a high-altitude intermountain basin at the western end of the Himalayan-Tibetan orogen, Waqia Valley, Chinese Pamir. Geomorphology 284, 156174.CrossRefGoogle Scholar
Hedrick, K.A., Seong, Y.B., Owen, L.A., Caffee, M.W., Dietsch, C., 2011. Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of northern India. Quaternary International 236, 2133.CrossRefGoogle Scholar
Henderson, A.L., Najman, Y., Parrish, R., BouDagher‐Fadel, M., Barford, D., Garzanti, E., Andò, S., 2010. Geology of the Cenozoic Indus Basin sedimentary rocks: paleoenvironmental interpretation of sedimentation from the western Himalaya during the early phases of India‐Eurasia collision. Tectonics 29, TC6015. http://dx.doi.org/10.1029/2009TC002651.CrossRefGoogle Scholar
Herren, E., 1987. Zanskar shear zone: northeast-southwest extension within the Higher Himalayas (Ladakh, India). Geology 15, 409413.2.0.CO;2>CrossRefGoogle Scholar
Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25, 163178.CrossRefGoogle Scholar
Hewitt, K., 1998. Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology 26, 4780.CrossRefGoogle Scholar
Hewitt, K., 2002. Postglacial landform and sediment associations in a landslide-fragmented river system: the Transhimalayan Indus streams, Central Asia. In: Hewitt, K., Byrne, M.-L., English, M., Young, G. (Eds.), Landscapes of Transition: Landform Assemblages and Transformations in Cold Regions. Springer, Dordrecht, the Netherlands, pp. 6391.Google Scholar
Hobley, D.E., Sinclair, H.D., Mudd, S.M., 2012. Reconstruction of a major storm event from its geomorphic signature: the Ladakh floods, 6 August 2010. Geology 40, 483486.CrossRefGoogle Scholar
Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thöni, M., Trommsdorff, V., 1982. Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth and Planetary Science Letters 60, 253292.CrossRefGoogle Scholar
Horton, F., Lee, J., Hacker, B., Bowman-Kamaha’o, M., Cosca, M., 2015. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: new geochronology of Gianbul dome, northwestern India. Geological Society of America Bulletin 127, 162180.CrossRefGoogle Scholar
Horton, F., Leech, M.L., 2013. Age and origin of granites in the Karakoram shear zone and Greater Himalaya Sequence, NW India. Lithosphere 5, 300320.CrossRefGoogle Scholar
Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., Sares, S.W., 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology 54, 103116.Google Scholar
Jade, S., Rao, H.J.R., Vijayan, M.S.M., Gaur, V.K., Bhatt, B.C., Kumar, K., Jaganathan, S., Ananda, M.B., Kumar, P.D., 2010. GPS-derived deformation rates in northwestern Himalaya and Ladakh. International Journal of Earth Sciences 100, 12931301.CrossRefGoogle Scholar
Jaiswal, M., Srivastava, P., Tripathi, J., Islam, R., 2008. Feasibility of the SAR technique on Quartz sand of terraces of NW Himalaya: a case study from Devprayag. Geochronometria 31, 4552.CrossRefGoogle Scholar
Jerolmack, D.J., Paola, C., 2010. Shredding of environmental signals by sediment transport. Geophysical Research Letters 37, L19401. http://dx.doi.org/10.1029/2010GL044638.CrossRefGoogle Scholar
Jonell, T.N., Carter, A., Böning, P., Pahnke, K., Clift, P.D., 2017. Climatic and glacial impact on erosion patterns and sediment provenance in the Himalayan rain shadow, Zanskar River, NW India. Geological Society of America Bulletin 129, 820836.CrossRefGoogle Scholar
Kamp, U., Byrne, M., Bolch, T., 2011. Glacier fluctuations between 1975 and 2008 in the Greater Himalaya Range of Zanskar, southern Ladakh. Journal of Mountain Science 8, 374389.CrossRefGoogle Scholar
Kathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R.L., Zhang, H., Li, X., Yi, L., Ning, Y., Cai, Y., 2016. Indian monsoon variability on millennial-orbital timescales. Scientific Reports 6, 24374. http://dx.doi.org/10.1038/srep24374.CrossRefGoogle ScholarPubMed
Kirstein, L.A., Foeken, J.P.T., Van Der Beek, P., Stuart, F.M., Phillips, R.J., 2009. Cenozoic unroofing history of the Ladakh Batholith, western Himalaya, constrained by thermochronology and numerical modelling. Journal of the Geological Society 166, 667678.CrossRefGoogle Scholar
Kirstein, L.A., Sinclair, H.D., Stuart, F.M., Dobson, K., 2006. Rapid early Miocene exhumation of the Ladakh batholith, western Himalaya. Geology 34, 10491052.CrossRefGoogle Scholar
Korup, O., Montgomery, D.R., Hewitt, K., 2010. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Proceedings of the National Academy of Sciences of the United States of America 107, 53175322.CrossRefGoogle ScholarPubMed
Kumar, A., Srivastava, P., Meena, N.K., 2017. Late Pleistocene aeolian activity in the cold desert of Ladakh: a record from sand ramps. Quaternary International 443, 1328.CrossRefGoogle Scholar
Lee, S.Y., Seong, Y.B., Owen, L.A., Murari, M.K., Lim, H.S., Yoon, H.I., Yoo, K.C., 2014. Late Quaternary glaciation in the Nun‐Kun massif, northwestern India. Boreas 43, 6789.CrossRefGoogle Scholar
Leipe, C., Demske, D., Tarasov, P.E., 2014. A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. Quaternary International 348, 93112.CrossRefGoogle Scholar
Métivier, F., Gaudemer, Y., 1999. Stability of output fluxes of large rivers in South and East Asia during the last 2 million years: implications on floodplain processes. Basin Research 11, 293303.CrossRefGoogle Scholar
Mishra, P.K., Anoop, A., Schettler, G., Prasad, S., Jehangir, A., Menzel, P., Naumann, R., Yousuf, A., Basavaiah, N., Deenadayalan, K., 2015. Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quaternary International 371, 7686.CrossRefGoogle Scholar
Mitchell, W.A., Taylor, P.J., Osmaston, H., 1999. Quaternary geology in Znaskar, NW Indian Himalaya: evidence for restricted glaciation and preglacial topography. Journal of Asian Earth Sciences 17, 307318.CrossRefGoogle Scholar
Munack, H., Blöthe, J.H., Fülöp, R.H., Codilean, A.T., Fink, D., Korup, O., 2016. Recycling of Pleistocene valley fills dominates 135 ka of sediment flux, upper Indus River. Quaternary Science Reviews 149, 122134.CrossRefGoogle Scholar
Murari, M.K., Owen, L.A., Dortch, J.M., Caffee, M.W., Dietsch, C., Fuchs, M., Haneberg, W.C., Sharma, M.C., Townsend-Small, A., 2014. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan–Tibetan orogen. Quaternary Science Reviews 88, 159182.CrossRefGoogle Scholar
Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., et al. 2015. Loess Plateau storage of northeastern Tibetan Plateau–derived Yellow River sediment. Nature. Communications 6, 8511. http://dx.doi.org/10.1038/ncomms9511.Google Scholar
Noble, S.R., Searle, M.P., 1995. Age of crustal melting and leukogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India. Geology 23, 11351138.2.3.CO;2>CrossRefGoogle Scholar
Osmaston, H., 1994. The geology, geomorphology and Quaternary history of Zangskar. In: Crook, J., Osmaston, H. (Ed.), Himalayan Buddhist Villages: Environment, Resources, Society and Religious Life in Zangskar, Ladakh. University of Bristol, Bristol, UK, pp. 135.Google Scholar
Owen, L.A., 2009. Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quaternary Science Reviews 28, 21502164.CrossRefGoogle Scholar
Owen, L.A., Caffee, M.W., Bovard, K.R., Finkel, R.C., Sharma, M.C., 2006. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India. Geological Society of America Bulletin 118, 383392.CrossRefGoogle Scholar
Owen, L.A., Dortch, J.M., 2014. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quaternary Science Reviews 88, 1454.CrossRefGoogle Scholar
Owen, L.A., Gualtieri, L., Finkel, R.C., Caffee, M.W., Benn, D.I., Sharma, M.C., 2002. Reply: cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation. Journal of Quaternary Science 17, 279281.CrossRefGoogle Scholar
Pant, R., Phadtare, N., Chamyal, L., Juyal, N., 2005. Quaternary deposits in Ladakh and Karakoram Himalaya: a treasure trove of the palaeoclimate records. Current Science 88, 17891798.Google Scholar
Phartiyal, B., Sharma, A., Upadhyay, R., 2005. Quaternary geology, tectonics and distribution of palaeo- and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya—a study based on field observations. Geomorphology 65, 241256.CrossRefGoogle Scholar
Pognante, U., Castelli, D., Benna, P., Genovese, G., Oberli, F., Meier, M., Tonarini, S., 1990. The crystalline units of the High Himalayas in the Lahul-Zanskar region (northwest India): metamorphictectonic history and geochronology of the collided and imbricated Indian plate. Geological Magazine 127, 101116.CrossRefGoogle Scholar
Pratt, B., Burbank, D.W., Heimsath, A., Ojha, T., 2002. Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalaya. Geology 30, 911914.2.0.CO;2>CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation measurements 23, 497500.CrossRefGoogle Scholar
Prins, M., Postma, G., Weltje, G.J., 2000. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Marine Geology 169, 351371.CrossRefGoogle Scholar
Rhodes, E.J., 2011. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences 39, 461488.CrossRefGoogle Scholar
Romans, B.W., Castelltort, S., Covault, J.A., Fildani, A., Walsh, J., 2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews 153, 729.CrossRefGoogle Scholar
Saha, S., Sharma, M.C., Murari, M.K., Owen, L.A., Caffee, M.W., 2016. Geomorphology, sedimentology and minimum exposure ages of streamlined subglacial landforms in the NW Himalaya, India. Boreas 45, 284303.CrossRefGoogle Scholar
Schaetzl, R.J., Forman, S.L., 2008. OSL ages on glaciofluvial sediment in northern Lower Michigan constrain expansion of the Laurentide ice sheet. Quaternary Research 70, 8190.CrossRefGoogle Scholar
Scherler, D., Bookhagen, B., Wulf, H., Preusser, F., Strecker, M.R., 2015. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth and Planetary Science Letters 428, 255266.CrossRefGoogle Scholar
Scherler, D., Munack, H., Mey, J., Eugster, P., Wittmann, H., Codilean, A.T., Kubik, P., Strecker, M.R., 2014. Ice dams, outburst floods, and glacial incision at the western margin of the Tibetan Plateau: a >100 k.y. chronology from the Shyok Valley, Karakoram. Geological Society of America Bulletin 126, 738758.CrossRefGoogle Scholar
Schlup, M., Carter, A., Cosca, M., Steck, A., 2003. Exhumation history of eastern Ladakh revealed by 40Ar-39Ar and fission track ages: the Indus River–Tso Morari transect, NW Himalaya. Journal of the Geological Society 160, 385399.CrossRefGoogle Scholar
Schlup, M., Steck, A., Carter, A., Cosca, M., Epard, J.-L., Hunziker, J., 2011. Exhumation history of the NW Indian Himalaya revealed by fission track and 40Ar/39Ar ages. Journal of Asian Earth Sciences 40, 334350.CrossRefGoogle Scholar
Schwanghart, W., Scherler, D., 2014. Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics 2, 17.CrossRefGoogle Scholar
Searle, M.P., 1983. On the Tectonics of the Western Himalaya. Episodes 1983, 2126.CrossRefGoogle Scholar
Searle, M.P., Pickering, K.T., Cooper, D.J.W., 1990. Restoration and evolution of the intermontane Indus molasse basin, Ladakh Himalaya, India. Tectonophysics 174, 301314.CrossRefGoogle Scholar
Sharma, S., Chand, P., Bisht, P., Shukla, A.D., Bartarya, S., Sundriyal, Y., Juyal, N., 2016. Factors responsible for driving the glaciation in the Sarchu Plain, eastern Zanskar Himalaya, during the late Quaternary. Journal of Quaternary Science 31, 495511.CrossRefGoogle Scholar
Shellnutt, J.G., Bhat, G.M., Wang, K.-L., Brookfield, M.E., Dostal, J., Jahn, B.-M., 2012. Origin of the silicic volcanic rocks of the Early Permian Panjal Traps, Kashmir, India. Chemical Geology 334, 154170.CrossRefGoogle Scholar
Shellnutt, J.G., Bhat, G.M., Wang, K.-L., Brookfield, M.E., Jahn, B.-M., Dostal, J., 2014. Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: geochemical evidence for shallow melting of the mantle. Lithos 204, 159171.CrossRefGoogle Scholar
Shi, Y., Yu, G., Liu, X., Li, B., Yao, T., 2001. Reconstruction of the 30–40 ka bp enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 169, 6983.CrossRefGoogle Scholar
Simpson, G., Castelltort, S., 2012. Model shows that rivers transmit high-frequency climate cycles to the sedimentary record. Geology 40, 11311134.CrossRefGoogle Scholar
Sinha, A., Cannariato, K.G., Stott, L.D., Li, H.-C., You, C.-F., Cheng, H., Edwards, R.L., Singh, I.B., 2005. Variability of southwest Indian summer monsoon precipitation during the Bølling-Ållerød. Geology 33, 813816.CrossRefGoogle Scholar
Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., et al. 2008. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Spring, L., Bussy, F., Vannay, J.-C., Huon, S., Cosca, M., 1993. Early Permian granitic dykes of alkaline affinity in the Indian High Himalaya of Upper Lahul and SE Zanskar: geochemical characterization and geotectonic implications. Geological Society, London, Special Publications 74, 251264.CrossRefGoogle Scholar
Srivastava, P., Rajak, M.K., Singh, L.P., 2009. Late Quaternary alluvial fans and paleosols of the Kangra basin, NW Himalaya: tectonic and paleoclimatic implications. Catena 76, 135154.CrossRefGoogle Scholar
Srivastava, P., Tripathi, J.K., Islam, R., Jaiswal, M.K., 2008. Fashion and phases of Late Pleistocene aggradation and incision in Alaknanda River, western Himalaya India. Quaternary Research 70, 6880.CrossRefGoogle Scholar
Staubwasser, M., Weiss, H., 2006. Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quaternary Research 66, 372387.CrossRefGoogle Scholar
Steck, A., Spring, L., Vannay, J.-C., Masson, H., Stutz, E., Bucher, H., Marchant, R., Tièche, J.-C., 1993. Geological transect across the northwestern Himalaya in eastern Ladakh and Lahul (a model for the continental collision of India and Asia). Eclogae Geologicae Helvetiae 86, 219263.Google Scholar
Taylor, P.J., Mitchell, W.A., 2000. The Quaternary glacial history of the Zanskar range, north-west Indian Himalaya. Quaternary International 65–66, 8199.CrossRefGoogle Scholar
Thakur, V., Joshi, M., Sahoo, D., Suresh, N., Jayangondapermal, R., Singh, A., 2014. Partitioning of convergence in northwest sub-Himalaya: estimation of late Quaternary uplift and convergence rates across the Kangra reentrant, north India. International Journal of Earth Sciences 103, 10371056.CrossRefGoogle Scholar
Vermeesch, P., 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters 224, 351441.CrossRefGoogle Scholar
Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical Geology 312–313, 190194.CrossRefGoogle Scholar
Vermeesch, P., Resentini, A., Garzanti, E., 2016. An R package for statistical provenance analysis. Sedimentary Geology 336, 1425.CrossRefGoogle Scholar
Walder, J., Hallet, B., 1985. A theoretical model of the fracture of rock during freezing. Geological Society of America Bulletin 96, 336346.2.0.CO;2>CrossRefGoogle Scholar
Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., et al. 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research 28, 939.CrossRefGoogle Scholar
Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391.CrossRefGoogle Scholar
Wulf, H., Bookhagen, B., Scherler, D., 2010. Seasonal precipitation gradients and their impact on fluvial sediment flux in the northwest Himalaya. Geomorphology 118, 1321.CrossRefGoogle Scholar
Wulf, H., Bookhagen, B., Scherler, D., 2012. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrology and Earth System Sciences Discussions 9, 541594.Google Scholar
Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt, C., Bloemendal, J., Diekmann, B., et al. 2010. Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews 29, 11381155.CrossRefGoogle Scholar
Yang, S., Zhang, F., Wang, Z., 2012. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China. Chemical Geology 296–297, 2638.CrossRefGoogle Scholar
Supplementary material: File

Jonell et al supplementary material

Jonell et al supplementary material 1

Download Jonell et al supplementary material(File)
File 18.9 KB