Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T17:08:20.210Z Has data issue: false hasContentIssue false

Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the Llanos de Moxos, lowland Bolivia

Published online by Cambridge University Press:  20 January 2017

Bronwen S. Whitney*
Affiliation:
School of Geosciences, The University of Edinburgh, Drummond St., Edinburgh EH8 9XP, UK
Ruth Dickau
Affiliation:
Department of Archaeology, Laver Bldg., North Park Rd., University of Exeter, Exeter EX4 4QE, UK
Francis E. Mayle
Affiliation:
School of Geosciences, The University of Edinburgh, Drummond St., Edinburgh EH8 9XP, UK Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6AB, UK
J. Daniel Soto
Affiliation:
Museo de Historia Natural ‘Noel Kempff Mercado’, Universidad Autónomia Gabriel René Moreno, Av. Irala 565, Casilla 2489, Santa Cruz, Bolivia
José Iriarte
Affiliation:
Department of Archaeology, Laver Bldg., North Park Rd., University of Exeter, Exeter EX4 4QE, UK
*
*Corresponding author. E-mail address:[email protected] (B.S. Whitney).

Abstract

We present a multiproxy study of land use by a pre-Columbian earth mounds culture in the Bolivian Amazon. The Monumental Mounds Region (MMR) is an archaeological sub-region characterized by hundreds of pre-Columbian habitation mounds associated with a complex network of canals and causeways, and situated in the forest–savanna mosaic of the Llanos de Moxos. Pollen, phytolith, and charcoal analyses were performed on a sediment core from a large lake (14 km2), Laguna San José (14°56.97′S, 64°29.70′W). We found evidence of high levels of anthropogenic burning from AD 400 to AD 1280, corroborating dated occupation layers in two nearby excavated habitation mounds. The charcoal decline pre-dates the arrival of Europeans by at least 100 yr, and challenges the notion that the mounds culture declined because of European colonization. We show that the surrounding savanna soils were sufficiently fertile to support crops, and the presence of maize throughout the record shows that the area was continuously cultivated despite land-use change at the end of the earth mounds culture. We suggest that burning was largely confined to the savannas, rather than forests, and that pre-Columbian deforestation was localized to the vicinity of individual habitation mounds, whereas the inter-mound areas remained largely forested.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, K.D., Willis, K.J., (2002). Pollen. Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands.532.Google Scholar
Bronk Ramsey, C., (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Bruno, M.C., (2010). Carbonized plant remains from Loma Salvatierra. Zeitschrift für Archäologie Außereuropäischer 3, 151206.Google Scholar
Burbridge, R.E., Mayle, F.E., Killeen, T.J., (2004). Fifty-thousand-Bolivian Amazon. Quaternary Research 61, year vegetation and climate history of Noel Kempff Mercado National Park, 215230.Google Scholar
Burn, M.J., Mayle, F.E., Killeen, T.J., (2010). Pollen-based differentiation of Amazonian rainforest communities and implications for lowland palaeoecology in tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 118.Google Scholar
Bush, M.B., Weng, C.Y., (2007). Introducing a new (freeware) tool for palynology. Journal of Biogeography 34, 377380.Google Scholar
Clapperton, C., (1993). Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam, The Netherlands.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, P.J.E., (1999). Amazon Pollen Manual and Atlas. Harwood Academic Publishers, Amsterdam.Google Scholar
Denevan, W.M., (1966). The Aboriginal Cultural Geography of the Llanos de Mojos of Bolivia. Ibero-Americana 48, University of California Press, Berkeley, CA.Google Scholar
Denevan, W.M., (1992). The pristine myth: the landscape of the Americas in 1492. Annals of the Association of American Geographers 82, 369385.CrossRefGoogle Scholar
Denevan, W.M., (2001). Cultivated Landscapes of Native Amazonia and the Andes. Oxford University Press, Oxford.CrossRefGoogle Scholar
Denevan, W.M., (2011). The “Pristine Myth” revisited. Geographical Review 101, 576591.CrossRefGoogle Scholar
Dickau, R., Bruno, M.C., Iriarte, J., Primers, H., Betancourt, C.J., Holst, I., Mayle, F.E., (2012). Diversity of cultivars and other plant resources used at habitation sites in the Llanos de Mojos, Beni, Bolivia: evidence from macrobotanical remains, starch grains, and phytoliths. Journal of Archaeological Science 39, 357370.Google Scholar
Dickau, R., Whitney, B.S., Iriarte, J., Mayle, F.E., Soto, J.D., Metcalfe, P., Street-Perrott, F.A., Loader, N.J., Ficken, K.J., Killeen, T.J., (2013). Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Review of Palaeobotany and Palynology 193, 1537.CrossRefGoogle Scholar
Doebley, J., (1990). Molecular evidence and the evolution of maize. Economic Botany 44, 627.CrossRefGoogle Scholar
Dougherty, B., Calandra, H., (1984). Prehispanic human settlement in the Llanos de Moxos, Bolivia. Rabassa, J. Quaternary of South America and Antarctic Peninsula. Balkema, Rotterdam.163199.Google Scholar
Erickson, C.L., (1995). Archaeological methods for the study of ancient landscapes of the Llanos de Mojos in the Bolivian Amazon. Stahl, P. Archaeology in the Lowland American Tropics. Cambridge University Press, Cambridge.6695.Google Scholar
Erickson, C.L., (2000a). An artificial landscape-scale fishery in the Bolivian Amazon. Nature 408, 190193.Google Scholar
Erickson, C.L., (2000b). Lomas de ocupacion de los Llanos de Moxos. Dur"n, A., Bracco, R. Arqueología de la Tierras Bajas. Ministerio de Educacíon y Cultura, Montevideo.207226.Google Scholar
Erickson, C.L., (2006). The domesticated landscapes of the Bolivian Amazon. Balíe, W., Erickson, C.L. Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands. 235278.Google Scholar
Erickson, C.L., (2008). Amazonia: the historical ecology of a domesticated landscape. The Handbook of South American Archaeology. 157183.Google Scholar
Erickson, C.L., (2010). The transformation of environment into landscape: the historical ecology of monumental earthwork construction in the Bolivian Amazon. Diversity 2, 618652.Google Scholar
Erickson, C.L., Balie, W., (2006). The historical ecology of a complex landscape in Bolivia. Balíe, W., Erickson, C.L. Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands. 187233.Google Scholar
Fígri, K., Iversen, J., (1989). Textbook of Pollen Analysis. 4th ed. John Wiley, Chichester and New York.Google Scholar
Fredlund, G.G., Tieszen, L.T., (1994). Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography 21, 321335.CrossRefGoogle Scholar
Fukunaga, K., Hill, J., Vigouroux, Y., Matsuoka, Y., Sanchez G., J., Liu, K., Buckler, E.S., Doebley, J., (2005). Genetic diversity and population structure of Teosinte. Genetics 169, 22412254.Google Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., (2005). Modern pollen-rain characteristics of tall terra firme moist evergreen forest, southern Amazonia. Quaternary Research 64, 284297.Google Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., (2009). Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology 153, 7085.CrossRefGoogle Scholar
Hanagarth, W., (1993). Acerca de la Geoecología de las Sabanas del Beni en el Noreste de Bolivia. Instituto de Ecologia, La Paz, Bolivia.Google Scholar
Heckenberger, M.J., Neves, E.G., (2009). Amazonian archaeology. Annual Review of Anthropology 38, 251266.Google Scholar
Heckenberger, M.J., Russell, J.C., Fausto, C., Toney, J.R., Schmidt, M.J., Pereira, E., Franchetto, B., Kuikuro, A., (2008). Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 12141217.Google Scholar
Holst, I., Moreno, J.E., Piperno, D.R., (2007). Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proceedings of the National Academy of Sciences of the United States of America 104, 1760817613.CrossRefGoogle ScholarPubMed
Iriarte, J., Paz, E.A., (2009). Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quaternary International 193, 99123.CrossRefGoogle Scholar
Iriarte, J., Glaser, B., Watling, J., Wainwright, A., Birk, J.J., Renard, D., Rostain, S., McKey, D., (2010). Late Holocene Neotropical agricultural landscapes: phytolith and stable carbon isotope analysis of raised fields from French Guianan coastal savannahs. Journal of Archaeological Sciences 37, 29842994.CrossRefGoogle Scholar
Iriarte, J., Power, M.J., Rostain, S., Mayle, F.E., Jones, H., Watling, J., Whitney, B.S., McKey, D.B., (2012). Fire-free land use in pre-1492 Amazonian savannas. Proceedings of the National Academy of Sciences of the United States of America 109, 64736478.Google Scholar
Jacobson, G.L., Bradshaw, R., (1981). The selection of sites for paleovegetational studies. Quaternary Research 16, 8096.CrossRefGoogle Scholar
Jaimes Bentancourt, C., (2012). La Cerímica de la Loma Salvatierra. Plural Editores, La Paz.Google Scholar
Jarosz, N., Loubet, B., Durand, B., McCartney, A., Foueillassar, X., Huber, L., (2003). Field measurements of airborne concentration and deposition rate of maize pollen. Agricultural and Forest Meteorology 119, 3751.Google Scholar
Jones, H.T., Mayle, F.E., Pennington, R.T., Killeen, T.J., (2011). Characterisation of Bolivian savanna ecosystems by their modern pollen rain and implications for fossil pollen records. Review of Palaeobotany and Palynology 164, 223237.Google Scholar
Juggins, S., (2003). User Guide C2. Software for Ecological and Palaeoecological Data Analysis and Visualization, User Guide Version 1.3. University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
Lane, C.S., Cummings, K.E., Clark, J.J., (2010). Maize pollen deposition in modern lake sediments: a case study from Northeastern Wisconsin. Review of Palaeobotany and Palynology 159, 177187.Google Scholar
Langstroth, R., (1996). Forest Islands in an Amazonian Savanna of Northeastern Bolivia. University of Wisconsin-Madison, Madison.Google Scholar
Langstroth, R., (2011). Biogeography of the Llanos de Moxos: natural and anthropogenic determinants. Geographica Helvetica 3, 183192.Google Scholar
Lombardo, U., (2010). Raised fields of northwestern Bolivia: a GIS based analysis. Zeitschrift für Archíologie Auíereuropíischer Kulturen 3, 127149.Google Scholar
Lombardo, U., Prímers, H., (2010). Pre-Columbian human occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. Journal of Archaeological Science 37, 18751885.Google Scholar
Lombardo, U., Canal-Beeby, E., Fehr, S., Veit, H., (2011a). Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy?. Journal of Archaeological Science 38, 502512.Google Scholar
Lombardo, U., Canal-Beeby, E., Veit, H., (2011b). Eco-archaeological regions in the Bolivian Amazon. An overview of pre-Columbian earthworks linking them to their environmental settings. Geographica Helvetica 3, 173182.Google Scholar
Lombardo, U., May, J.H., Veit, H., (2012). Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin. The Holocene 22, 10351045.Google Scholar
Lombardo, U., Denier, S., May, J.-H., Rodrigues, L., Veit, H., (2013). Human-environment interactions in pre-Columbian Amazonia: The case of the Llanos de Moxos, Bolivia. Quaternary International http://dx.doi.org/10.1016/j.quaint.2013.01.007 (in press).Google Scholar
Mann, C.C., (2008). Ancient earthmovers of the Amazon. Science 321, 11481152.Google Scholar
May, J.-H., Argollo, J., Veit, H., (2008). Holocene landscape evolution along the Andean piedmont, Bolivian Chaco. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 505520.Google Scholar
Mayle, F.E., Iriarte, J., (2013). Integrated palaeoecology and archaeology a powerful approach for understanding pre-Columbian Amazonia. Journal of Archaeological Science http://dx.doi.org/10.1016/j.jas.2012.08.038 (in press).Google Scholar
Mayle, F.E., Burbridge, R., Killeen, T.J., (2000). Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 22912294.CrossRefGoogle ScholarPubMed
Mayle, F.E., Langstroth, R.P., Fisher, R.A., Meir, P., (2007). Long-term forest"savannah dynamics in the Bolivian Amazon: implications for conservation. Philosophical Transactions of the Royal Society B-Biological Sciences 362, 291307.Google Scholar
McEwan, C., Barreto, C., Neves, E.G., (2001). Unknown Amazon: Culture in Nature in Ancient Brazil. British Museum Press, London.Google Scholar
Meggers, B.J., (1954). Environmental limitations on the development of culture. American Anthropologist 56, 801824.Google Scholar
Pirssinen, M., Schaan, D., Ranzi, A., (2009). Pre-Columbian geometric earthworks in the upper Puris: a complex society in western Amazonia. Antiquity 83, 10841095.CrossRefGoogle Scholar
Piperno, D.R., (1988). Phytolith Analysis: An Archaeological and Geological Perspective. Academic Press, San Diego.Google Scholar
Piperno, D.R., (2006). Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Alta Mira Press, San Diego, California.Google Scholar
Plotzki, A., May, J.-H., Veit, H., (2011). Review of past and recent fluvial dynamics in the Beni lowlands, NE Bolivia. Geographica Helvetica 3, 164172.Google Scholar
Pouilly, M., Beck, S.G., (2004). Geografia general. Pouilly, M., Beck, S.G., Moraes, M., Ibañez, C. Biológica en la Llanura de Inundación del Río Mamoré: Importancia Ecológica de la Dinámica fluvial.. Centro de Ecológia Simón I. Patiño, Santa Cruz, Bolivia.1526.Google Scholar
Power, M.J., Marlon, J.R., Bartlein, P.J., Harrison, S.P., (2010). Fire history and the global charcoal database: a new tool for hypothesis testing and data exploration. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 5259.CrossRefGoogle Scholar
Prümers, H., (2009). “Charlatanocracia” en Mojos Investigaciones arqueoligicas en la Loma Salvatierra, Beni, Bolivia. Kaulicke, P., Dillehay, T.D. Procesos y expresiones de poder, identidad y orden tempranos en Sudam"rica. Segunda Parte, Lima, Peru.103116.Google Scholar
Roubik, D.W., Moreno, P.J.E., (1991). Pollen and Spores of Barro Colorado Island. Missouri Botanical Garden, Missouri, IL.Google Scholar
Rushton, E.A.C., Metcalfe, S.E., Whitney, B.S., (2013). A late-Holocene vegetation history from the Maya lowlands, Lamanai, Northern Belize. The Holocene 23, 485493.Google Scholar
Schaan, D., (2012). Sacred Geographies of Ancient Amazonia: Historical Ecology of Social Complexity. Left Coast Press, Walnut Creek, CA.Google Scholar
Stockmarr, J., (1971). Calcium tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Sugita, S., (1994). Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology 82, 881897.Google Scholar
Sugita, S., (2007). Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17, 229241.Google Scholar
Sugita, S., Gaillard, M.J., Broström, A., (1999). Landscape openness and pollen records: a simulation approach. The Holocene 9, 409421.Google Scholar
Walker, J.H., (2004). Agricultural Change in the Bolivian Amazon. University of Pittsburgh Latin American Archaeology Publications, Pittsburgh.Google Scholar
Walker, J.H., (2008). Pre-Columbian ring ditches along the Yacuma and Rapulo Rivers, Beni, Bolivia: a preliminary review. Journal of Field Archaeology 33, 413427.Google Scholar
Watling, J., Iriarte, J., (2013). Phytoliths from the coastal savannas of French Guiana. Quaternary International 287, 162180.Google Scholar
Whitlock, C., Larsen, C., (2001). Charcoal as a fire proxy. Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands.7597.Google Scholar
Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T., Metcalfe, S.E., (2011). A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 177192.Google Scholar
Whitney, B.S., Rushton, E.A.C., Carson, J.F., Iriarte, J., Mayle, F.E., (2012). An improved methodology for the recovery of Zea mays and other large crop pollen, with implications for environmental archaeology in the Neotropics. The Holocene 22, 10871096.Google Scholar