Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T19:11:34.953Z Has data issue: false hasContentIssue false

The Potential Role of Peatland Dynamics in Ice-Age Initiation

Published online by Cambridge University Press:  20 January 2017

Lee F. Klinger
Affiliation:
The National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado, 80307
John A. Taylor
Affiliation:
Centre for Resource and Environmental Studies, The Australian National University, Canberra, ACT 0200, Australia
Lars G. Franzen
Affiliation:
Department of Physical Geography, Göteborg University, Reutersgatan 2C, S-413 20, Gothenburg, Sweden

Abstract

Physical and chemical coupling of peatland vegetation, soils and landforms, and atmosphere creates feedbacks which may be important in ice-age initiation. A box diffusion CO2 exchange model shows that a transient forcing of 500 Gt C (the amount proposed to have accumulated in peatlands during the last interglacial–glacial transition) over 5000 yr results in a lowering of atmospheric CO2 by about 40 ppm. Proxy data indicate that a decrease in atmospheric CO2 may have occurred over the last 5000 yr up to preindustrial times, and the amount is similar to that calculated from Holocene peatland expansion (∼22 ppm). These results suggest that models should consider the role of peatlands in ice-age initiation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnola, J. M. Raynaud, D. Korotkevich, Y. S., and Lorius, C. (1987). Vostok ice core provides 160,000 year record of atmospheric CO2. Nature 329 , 408414.Google Scholar
Billings, W. D. (1987). Carbon balance of Alaskan tundra and taiga ecosystems: Past, present and future. Quaternary Science Reviews 6 , 165177. Bohn, H. L. (1976). Estimate of organic carbon in world soils. Soil Science Society of America Journal 40 , 468470.Google Scholar
Bonan, G. B. Pollard, D., and Thompson, S. L. (1992). Effects of boreal forest vegetation on global climate. Nature 359 , 716718.Google Scholar
Botch, M. S. Kobak, K. I. Vinson, T. S., and Kolchugina, T. P. (1995). Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochemical Cycles 9 , 3746.Google Scholar
Boyle, E. A. (1990). Quaternary deepwater paleoceanography. Science 249 , 863870.Google Scholar
Broecker, W. S., and Peng, T.-H. (1993). Interhemispheric transport of carbon through the ocean. In “The Global Carbon Cycle” (Heimann, M., Ed.), pp. 551570. Springer-Verlag, Berlin.Google Scholar
Clymo, R. S., and Hayward, P. M. (1982). The ecology of Sphagnum. In “Bryophyte Ecology” (A. Smith, J. E., Ed.), pp. 229289. Chapman & Hall, London.Google Scholar
Crowley, T. J. (1991). Ice age carbon. Nature 352 , 575576.Google Scholar
Feng, X., and Epstein, S. (1994). Climatic implications of an 8000-year hydrogen isotope time series from bristlecone pine trees. Science 265 , 10791081.Google Scholar
Franzen, L. G. (1994). Are wetlands the key to the ice-age cycle enigma? Ambio 23 , 300308.Google Scholar
Genthon, C. Barnola, J. M. Raynaud, D. Lorius, C. Jouzel, J. Barkov, N. I. Korotkevich, Y. S., and Kotlyakov, V. M. (1987). Vostok ice core: Climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature 329 , 414418.Google Scholar
Gorham, E. (1991). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1 , 182195. Imbrie, J. Boyle, E. Clemens, S. Duffy, A. Howard, W. Kukla, G. Kutz-bach, J. Martinson, D. McIntyre, A. Mix, A. Molfino, B. Morley, J. Peterson, L. Pisias, N. Prell, W. Raymo, M. Shackleton, N., and Togg- weiler, J. (1992). On the structure and origin of major glaciation cycles, 1, Linear responses to Milankovitch forcing. Paleoceanography 7 , 701738.Google Scholar
Klinger, L. F. (1990). Global patterns in community succession 1. Bryophytes and forest decline. Memoirs of the Torrey Botanical Club 24 , 150.Google Scholar
Klinger, L. F. (1991). Peatland formation and ice ages: A possible Gaian mechanism related to community succession. In “Scientists on Gaia” (Schneider, S. H. and Boston, P. J., Eds.), pp. 246255. MIT Press, Cambridge.Google Scholar
Klinger, L. F. (1996). The myth of the classic hydrosere model of bog succession. Arctic and Alpine Research, in press.Google Scholar
Klinger, L. F. Elias, S. A., Behan-Pelletier, V. M., and Williams, N. E. (1990). The bog climax hypothesis: Fossil arthropod and stratigraphic evidence in peat sections from southeast Alaska, USA. Holarctic Ecology 13 , 7280.Google Scholar
Klinger, L. F. Zimmerman, P. R. Greenberg, J. P. Heidt, L. E., and Guenther, A. B. (1994). Carbon trace gas fluxes along a successional gradient in the Hudson Bay lowland. Journal of Geophysical Research 99 , 14691494.Google Scholar
Mortlock, R. A. Charles, C. D. Froelich, P. N. Zibello, M. A. Saltzman, J. Hays, J. D., and Burckle, L. H. (1991). Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351 , 220223.Google Scholar
Neftel, A. Oeschger, H. Schwander, J. Stauffer, B., and Zumbrunn, R. (1982). Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295 , 222223.Google Scholar
Neustadt, M. I. (1982). Bog-forming processes in the Holocene. INQUA Meeting Proceedings 2 , 212.Google Scholar
Pearman, G. I. Etheridge, D. de Silva, F., and Fraser, P. J. (1986). Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. Nature 320 , 248250.Google Scholar
Pedersen, T. F. Nielsen, B., and Pickering, M. (1991). Timing of late Quaternary productivity pulses in the Panama Basin and implications for atmospheric CO2. Paleoceanography 6 , 657677.Google Scholar
Raynaud, D., and Barnola, J. M. (1985). An Antarctic ice core reveals atmospheric CO2 variations over the past few centuries. Nature 315 , 309311.Google Scholar
Saltzman, B., and Verbitsky, M. (1994). Late Pleistocene climatic trajectory in the phase space of global ice, ocean state, and CO2: Observations and theory. Paleoceanography 9 , 767779.Google Scholar
Sarmiento, J. L., and Toggweiler, J. R. (1984). A new model for the role of the oceans in determining atmospheric Pco2 . Nature 308 , 621624.Google Scholar
Siegenthaler, U., and Oeschger, H. (1978). Predicting future atmospheric carbon dioxide levels. Science 199 , 388395.Google Scholar
Sjörs, H. (1980). Peat on Earth: Multiple use or conservation?. Ambio 9 , 303308.Google Scholar
Struck, U. Sarnthein, M. Westerhausen, L. Barnola, J. M., and Raynaud, D. (1993). Ocean-atmosphere carbon exchange: Impact of the “biological pump” in the Atlantic equatorial upwelling belt over the last 330,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 103 , 4156.Google Scholar
Stuiver, M. Burk, R. L., and Quay, P. D. (1984). 13C/12C ratios in tree rings and the transfer of biospheric carbon to the atmosphere. Journal of Geophysical Research 89 , 11,73111,748.Google Scholar
Whalen, M. Allen, D. Deck, B., and Herchenroder, A. (1991). Initial measurements of CO2 concentrations (1530 to 1940 AD) in air occluded in the GISP 2 ice core from central Greenland. Geophysical Research Letters 18 , 14571460.Google Scholar
White, J. W. C. Ciais, P. Figge, R. A. Kenny, R., and Markgraf, V. (1994). A high-resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature 367 , 153156.Google Scholar