Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T15:57:40.484Z Has data issue: false hasContentIssue false

Potential for14C Dating of Biogenic Carbonate in Hackberry (Celtis) Endocarps

Published online by Cambridge University Press:  20 January 2017

Yang Wang
Affiliation:
Division of Ecosystem Sciences, University of California, Berkeley, California, 94720
A.Hope Jahren
Affiliation:
Division of Ecosystem Sciences, University of California, Berkeley, California, 94720
Ronald Amundson
Affiliation:
Division of Ecosystem Sciences, University of California, Berkeley, California, 94720

Abstract

Hackberry endocarp (Celtissp.) contains significant amounts (up to 70 wt%) of biogenic carbonate that is nearly pure aragonite (CaCO3). Because of their high mineral content, hackberry endocarps are found abundantly in Tertiary and Quaternary sediments and are very common in many North American archaeological sites. We analyzed the14C content of different components of modern hackberries including the biogenic carbonate in hackberry endocarps collected at known times over the past century. The14C content of the endocarp carbonate accurately records the14C content of the atmosphere.14C dates of fossil endocarp carbonates compared favorably with dates obtained by other means at archaeological and geological sites ranging in age from the late Pleistocene through the early Holocene. We therefore suggest that hackberry endocarp is a suitable substrate for14C dating provided that its morphological and mineralogical integrity is preserved.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amundson, R., Wang, Y., Chadwick, O., Trumbore, S., McFadden, L., McDonald, E., Wells, S., DeNiro, M., 1994, Factors and processes governing the carbon-14 content of carbonate in desert soils, Earth and Planetary Science Letters, 125, 385405.Google Scholar
Damon, P. E., Lerman, J. C., Long, A., 1978, Temporal fluctuations of atmospheric14 , Annual Review of Earth and Planetary Science Letters, 6, 457494.CrossRefGoogle Scholar
Donahue, D. J., Linick, T. W., Jull, A. J. T., 1990, Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements, Radiocarbon, 32, 135142.Google Scholar
Folk, R. L., Assereto, R., 1976, Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothem, Carlsbad Caverns, New Mexico, Journal of Sedimentary Petrology, 46, 486496.Google Scholar
Haynes, C. V., 1968, Radiocarbon: Analysis of inorganic carbon of fossil bone and enamel, Science, 161, 687688.CrossRefGoogle ScholarPubMed
Haynes, C. V., 1980, Paleoindian charcoal from meadowcroft rockshelter: Is contamination a problem?, American Antiquity, 45, 582587.Google Scholar
Haffner, J., Gabel, M. L., Tieszen, L. L., 1991, Stable carbon isotope ratios of Miocene sediments and fossil Celtis [(Ulmaceae) and Berriochloa (Gramineae)] reproductive structures from the northern Great Plains, Proceedings of the South Dakota Academy of Science, 69, 145152.Google Scholar
Houle, G., Bouchard, F., 1990, Hackberry (Celtis occidentalis) at the northeastern limit of its distribution in North America: Population structure and radial growth patterns, Canadian Journal of Botany, 68, 26852692.CrossRefGoogle Scholar
Jahren, A. H., Amundson, R. G., Gabel, M., Tieszen, L., 1994, Potential of hackberry endocarp as a terrestrial paleoclimate indicator: Calculation of meteoric water δ18 18 , EOS, Transactions (Abstracts), American Geophysical Union, 1994 Fall Meeting, 75, 346.Google Scholar
Jahren, A. H., Amundson, R. G., Kelley, G., Tieszen, L., Kendall, C., 1995, Biogenic carbonate in the hackberry endocarp: A terrestrial paleoclimate indicator, Goldschmidt Conference Programs and Abstracts, Penn State University, M, 57.Google Scholar
Jahren, A. H., 1996, The stable isotope composition of the Hackberry (Celtis , Univ. of California, Berkeley.Google Scholar
Lanner, R. M., 1983, Trees of the Great Basin, Univ. of Nevada Press, Reno. Google Scholar
Levin, I., Kromer, B., Schoch-Fischer, H., Berdau, D., Vogel, J., Munnich, K. O., 1985, 25 years of tropospheric14 , Radiocarbon, 27, 119.CrossRefGoogle Scholar
Little, E. L. Jr., 1976, Atlas of United States Trees—Minor Western Hardwoods, USDA Forest Service, Washington. Google Scholar
Manning, M. R., Melhuish, W. H., Wallace, G., Brenninkmeijer, C. A., McGill, G., 1990, The use of radiocarbon measurements in atmospheric studies, Radiocarbon, 32, 3758.Google Scholar
Minagawa, M., Winter, D. A., Kaplan, I. R., 1984, Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter, Analytical Chemistry, 56, 18591861.Google Scholar
Rhode, D., Madsen, D. B., 1995, Late Wisconsin/early Holocene vegetation in the Bonneville Basin, Quaternary Research, 44, 246256.Google Scholar
Segal, R. H., 1966, A review of some Tertiary endocarps of Celtis (Ulmaceae), The Southwestern Naturalist, 11, 211216.CrossRefGoogle Scholar
Sellstede, H., Engstrand, L., Gejvall, N. J., 1966, New application of radiocarbon dating to collagen residue in bones, Nature, 212, 572574.Google Scholar
Stephens, H. A., 1973, Woody Plants of the North Central Plains, Univ. Press of Kansas, Lawrence. Google Scholar
Stuiver, M., 1965, Carbon-14 content of 18th- and 19th-century wood: Variations correlated with sunspot activity, Science, 149, 533535.Google Scholar
Stuiver, M., Polach, H., 1977, Reporting of14 , Radiocarbon, 19, 355363.Google Scholar
Suess, H., 1955, Radiocarbon concentration in modern wood, Science, 122, 415417.Google Scholar
Thomasson, J. R., 1985, Sediment-borne “seeds” from Sand Creek, northwestern Kansas: Taphonomic significance and paleoecological and paleoenvironmental implications, Palaeogeography, Palaeoclimatology, Palaeoecology, 85, 213225.Google Scholar
Vogel, J. S., Nelson, D. E., Southon, J. R., 1989, Accuracy and precision in dating microgram carbon samples, Radiocarbon, 31, 145149.Google Scholar
Wang, Y., Amundson, R., Trumbore, S., 1993, Processes controlling14 2 , Chemical Geology, 107, 225226.Google Scholar
Wang, Y., Amundson, R., Trumbore, S., 1994, A model for soil14 2 14 , Geochimica et Cosmochimica Acta, 58, 393399.Google Scholar
Wang, Y., McDonald, E., Amundson, R., McFadden, L., Chadwick, O., 1996, An isotopic study of soils in chronological sequences of alluvial deposits, Providence Mountains, California, Geological Society of America Bulletin, 108, 379391.Google Scholar
Wyckoff, D. G., Hofman, J. L., Buehler, K., Miller, B. B., McCoy, W. D., Dort, W., Martin, L. D., Brackenridge, G. R., Theler, J. L., Todd, L. C., 1991, Interdisciplinary research at the Burnham site (34WO73), Woods County, Oklahoma, Guidebook, South-Central Friends of the Pleistocene 9th Annual Meeting—A Prehistory of the Plains Border Region, p. 82121.Google Scholar
Wyckoff, D. G., Carter, B. J., Theler, J. L., Martin, L. D., Meehan, T. J., Buehler, K. J., Brakenridge, G. R., Dort Jr., W., 1994, Geoarcheology at the Burnham Site: 1992 Investigations at a “Pre-Clovis Site in Northwestern Oklahoma, Univ. of Oklahoma, Norman, OK.Google Scholar
Yanovsky, E., Nelson, E. K., Kingsbury, R. M., 1932, Berries rich in calcium, Science, 75, 565566.CrossRefGoogle Scholar
Zussman, J., 1967, X-ray diffraction, Zussman, J., Physical Methods in Determinative Mineralogy, Academic Press, New York, 261334.Google Scholar