Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T17:40:47.939Z Has data issue: false hasContentIssue false

Pleistocene Precipitation Balance in the Amazon Basin Recorded in Deep Sea Sediments

Published online by Cambridge University Press:  20 January 2017

Sara E. Harris
Affiliation:
College of Oceanic and Atmospheric Sciences, Oregon State University
Alan C. Mix
Affiliation:
College of Oceanic and Atmospheric Sciences, Oregon State University

Abstract

Terrigenous sediments from Ceara Rise in the western tropical Atlantic Ocean record Pleistocene Amazon Basin climate variability. Iron oxides and oxyhydroxides in this region originate mainly from chemically leached Amazon lowland soils. Concentrations of goethite and hematite in the terrigenous fraction consistently peak during transitions from glacial to interglacial periods, suggesting an increased proportion of erosive products derived from the Amazon lowlands compared to the physically weathered highlands. Lowland Amazon Basin precipitation changes, monitored by the percentage of goethite relative to total iron oxides, lead ice age extremes with maximum aridity during ice growth and maximum precipitation during ice melt. Rapid climate changes over the Amazon Basin may reflect shifts in the position of the Intertropical Convergence Zone forced by northern hemisphere insolation at precessional (1/23,000 yr−1) and obliquity (1/41,000 yr−1) frequencies. Variance in the orbital eccentricity bands (1/100,000 and 1/413,000 yr−1) may be explained by nonlinear amplification of insolation forcing at precessional frequencies. The early response of Amazon precipitation to insolation, ahead of high-latitude ice volume (δ18O) at all orbital frequencies, suggests that tropical aridity is part of the chain of events leading to ice ages, rather than a response to glacier oscillations.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Seltzer, G.O., Kelts, K.R., and Southon, J. (1997). Holocene paleohydrology of the tropical Andes from lake records. Quaternary Research 47, 7080.CrossRefGoogle Scholar
Balsam, W.L., and Deaton, B.C. (1991). Sediment dispersal in the Atlantic Ocean: Evaluation by visible light spectra. Reviews in Aquatic Sciences 4, 411447.Google Scholar
Bickert, T., Curry, W.B., and Wefer, G. (1997). Late Pliocene to Holocene (2.6 to 0 Ma) western equatorial Atlantic deep water circulation: Inferences from benthic stable isotopes, Leg 154. Proceedings of the Ocean Drilling Program, Scientific Results, 154 Ocean Drilling Program, College Station.p. 239–253CrossRefGoogle Scholar
Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction. Wiley, New York.Google Scholar
Bush, M.B., Colinvaux, P.A., Wiemann, M.C., Piperno, D.R., and Liu, K. (1990). Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quaternary Research 34, 330345.CrossRefGoogle Scholar
Clapperton, C. (1993). Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.CrossRefGoogle Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., and Bush, M.B. (1996). A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 8588.CrossRefGoogle Scholar
Crowley, T.J., Kim, K.Y., Mengel, J.G., and Short, D.A. (1992). Modeling the 100,000-year climate fluctuations in pre-Pleistocene time series. Science 255, 705707.CrossRefGoogle ScholarPubMed
Crowley, T.J. (1992). North Atlantic Deep Water cools the southern hemisphere. Paleoceanography 7, 489497.CrossRefGoogle Scholar
Crowley, T.J., and Baum, S.K. (1997). Effect of vegetation on an ice-age climate model simulation. Journal of Geophysical Research 102, 1646316480.CrossRefGoogle Scholar
Curry, W.B., Shackleton, N.J., and Richter, C. (1995). Proceedings of the Ocean Drilling Program, Initial Reports, 154. Ocean Drilling Program, College Station.CrossRefGoogle Scholar
Damuth, J.E., and Fairbridge, R.W. (1970). Equatorial Atlantic deep-sea arkosic sands and ice-age aridity in tropical South America. Geological Society of America Bulletin 81, 189206.CrossRefGoogle Scholar
Deaton, B.C., and Balsam, W.L. (1991). Visible spectroscopy—A rapid method for determining hematite and goethite concentration in geological materials. Journal of Sedimentary Petrology 61, 628632.CrossRefGoogle Scholar
Francois, R., Bacon, M.P., and Suman, D.O. (1990). Thorium 230 profiling in deep-sea sediments: High-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years. Paleoceanography 5, 761787.CrossRefGoogle Scholar
Gibbs, R.J. (1967). The geochemistry of the Amazon river system. I. The factors that control the salinity and the composition and concentration of the suspended solids. Geological Society of America Bulletin 78, 12031232.CrossRefGoogle Scholar
Haase, R. (1992). Physical and chemical properties of savanna soils in northern Bolivia. Catena 19, 119134.CrossRefGoogle Scholar
Haberle, S. (1997). Upper Quaternary vegetation and climate history of the Amazon Basin: correlating marine and terrestrial pollen records.Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, 154 Ocean Drilling Program, College Station.381396.Google Scholar
Harris, S. E. (1998). The Atlantic, the Amazon, and the Andes.Neogene climate and tectonics viewed from Ceara Rise, western tropical Atlantic,Oregon State University, Google Scholar
Harris, S.E., Mix, A.C., and King, T.A. (1997). Biogenic and terrigenous sedimentation at Ceara Rise, western tropical Atlantic, supports Pliocene-Pleistocene deep-water linkage between hemispheres.Shackleton, N.J., Curry, W.B., Richter, C., Bralower, T.J. Proceedings of the Ocean Drilling Program, Scientific Results, 154 Ocean Drilling Program, College Station.331345.Google Scholar
Hays, J.D., Imbrie, J., and Shackleton, N.J. (1976). Variations in the Earth's orbit: Pacemaker of the ice ages. Science 194, 11211131.CrossRefGoogle ScholarPubMed
Imbrie, J., McIntyre, A., and Mix, A. (1989). Oceanic response to orbital forcing in the late Quaternary: Observational and experimental strategies.Berger, A., Schneider, S., Duplessy, J.C. Climate and Geo-Sciences Kluwer Academic, Dordrecht.121164.CrossRefGoogle Scholar
Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., and Toggweiler, J.R. (1992). On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701738.CrossRefGoogle Scholar
Imbrie, J., Berger, A., Boyle, E., Clemens, S., Duffy, A., Howard, W., Kukla, G., Kutzbach, J., Martinson, D., McIntyre, A., Mix, A., Molfino, B., Morley, J., Peterson, L., Pisias, N., Prell, W., Raymo, M., Shackleton, N., and Toggweiler, J. (1993). On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography 8, 699735.CrossRefGoogle Scholar
Johnsson, M.J., and Meade, R.H. (1990). Chemical weathering of fluvial sediments during alluvial storage: The Macuapanim Island point bar, Solimoes River, Brazil. Journal of Sedimentary Petrology 60, 827842.Google Scholar
Jordan, C.F. (1985). Soils of the Amazon rainforest.Prance, G.T., Lovejoy, T.E. Amazonia Pergamon, Oxford.8394.Google Scholar
Kampf, N., and Schwertmann, U. (1983). Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma 29, 2739.CrossRefGoogle Scholar
Kronberg, B.I., Benchimol, R.E., and Bird, M.I. (1991). Geochemistry of Acre Subbasin sediments: Window on ice-age Amazonia. Interciencia 16, 138141.Google Scholar
Laskar, J., Joutel, F., and Boudin, F. (1993). Orbital, precessional and insolation quantities for the Earth from −20 Myr to +10 Myr. Astronomy and Astrophysics 270, 522533.Google Scholar
Lean, J., and Warrilow, D.A. (1989). Simulation of the regional climatic impact of Amazon deforestation. Nature 342, 411413.CrossRefGoogle Scholar
Ledru, M., Bertaux, J., and Sifeddine, A. (1998). Absence of last glacial maximum records in lowland tropical forests. Quaternary Research 49, 233237.CrossRefGoogle Scholar
Liu, K., and Colinvaux, P.A. (1985). Forest changes in the Amazon Basin during the last glacial maximum. Nature 318, 8388.CrossRefGoogle Scholar
Martin, L., Bertaux, J., Correge, T., Ledru, M.P., Mourguiart, P., Sifeddine, A., Soubies, F., Wirrmann, D., Suguio, K., and Turcq, B. (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P. Quaternary Research 47, 117122.CrossRefGoogle Scholar
Martinelli, L.A., Victoria, R.L., Dematte, J.L.I., Richey, J.E., and Devol, A.H. (1993). Chemical and mineralogical composition of Amazon River floodplain sediments, Brazil. Applied Geochemistry 8, 391402.CrossRefGoogle Scholar
McGeary, D.F.R., and Damuth, J.E. (1973). Postglacial iron-rich crusts in hemipelagic deep-sea sediment. Geological Society of America Bulletin 84, 12011212.2.0.CO;2>CrossRefGoogle Scholar
Meade, R.H. (1994). Suspended sediments of the modern Amazon and Orinoco Rivers. Quaternary International 21, 2939.CrossRefGoogle Scholar
Meade, R.H., Dunne, T., Richey, J.E., Santos, U.M., and Salati, E. (1985). Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science 228, 488490.CrossRefGoogle ScholarPubMed
Mix, A.C., Rugh, W., Pisias, N.G., and Veirs, S. (1992). Color reflectance spectroscopy: a tool for rapid characterization of deep-sea sediments.Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., van Andel, T.H. Proceedings of the Ocean Drilling Program, Initial Reports, 138 Ocean Drilling Program, College Station.6777.Google Scholar
Pisias, N.G., and Mix, A.C. (1997). Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: Evidence from Radiolaria microfossils. Paleoceanography 12, 381393.CrossRefGoogle Scholar
Pokras, E.M., and Mix, A.C. (1987). Earth's precession cycle and Quaternary climatic change in tropical Africa. Nature 326, 486487.CrossRefGoogle Scholar
Polcher, J., and Laval, K. (1994). The impact of African and Amazonian deforestation on tropical climate. Journal of Hydrology 155, 389405.CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992). Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge Univ. Press, New York.p. 180–184Google Scholar
Richardson, D. S. (1974). The Origin of Iron-Rich Layers in Sediments of the Western Equatorial Atlantic Ocean. Columbia University, Google Scholar
Richey, J.E., Meade, R.H., Salati, E., Devol, A.H., Nordin, C.F. Jr., and dos Santos, U. (1986). Water discharge and suspended sediment concentrations in the Amazon River: 1982–1984. Water Resources Research 22, 756764.CrossRefGoogle Scholar
Rind, D., and Chandler, M. (1991). Increased ocean heat transports and warmer climate. Journal of Geophysical Research 96, 74377461.CrossRefGoogle Scholar
Ruhlemann, C., Frank, M., Hale, W., Mangini, A., Mulitza, S., Muller, P.J., and Wefer, G. (1996). Late Quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th-normalized carbonate and organic carbon accumulation rates. Marine Geology 135, 127152.CrossRefGoogle Scholar
Salati, E., and Vose, P.B. (1984). Amazon Basin: A system in equilibrium. Science 225, 129138.CrossRefGoogle Scholar
Sarnthein, M., Thiede, J., Pflaumann, U., Erlenkeuser, H., Futterer, D., Koopmann, B., Lange, H., and Seibold, E. (1982). Atmospheric and oceanic circulation patterns off northwest Africa during the past 25 million years.von Rad, U., Hinz, K., Sarnthein, M., Seibold, E. Geology of the Northwest African Continental Margin 547604.Google Scholar
Servant, M., Maley, J., Turcq, B., Absy, M.L., Brenac, P., Fournier, M., and Ledru, M.P. (1993). Tropical forest changes during the late Quaternary in African and South American lowlands. Global and Planetary Change 7, 2540.CrossRefGoogle Scholar
Shackleton, N.J. (1977). Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles.Anderson, N.R., Malahoff, A. The Fate of Fossil Fuel CO2 Plenum, New York.401427.CrossRefGoogle Scholar
Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., and Schneider, D.A. (1995). A new late Neogene time scale: Application to Leg 138 sites.Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., van Andel, T.H. Proceedings of the Ocean Drilling Program, Scientific Results, 138 Ocean Drilling Program, College Station.73101.Google Scholar
Short, D.A., Mengel, J.G., Crowley, T.J., Hyde, W.T., and North, G.R. (1991). Filtering of Milankovitch cycles by Earth's geography. Quaternary Research 35, 157173.CrossRefGoogle Scholar
Showers, W.J., and Bevis, M. (1988). Amazon Cone isotopic stratigraphy: Evidence for the source of the tropical freshwater spike. Palaeogeography, Palaeoclimatology, Palaeoecology 64, 189199.CrossRefGoogle Scholar
Stallard, R.F. (1988). Weathering and erosion in the humid tropics.Lerman, A., Meybeck, M. Physical and Chemical Weathering in Geochemical Cycles Kluwer Academic, Dordrecht.225246.CrossRefGoogle Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., and Bonani, G. (1995). Cooling of tropical Brazil (5°C) during the Last Glacial Maximum. Science 269 379383.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lim, P.-N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F., and Liu, K.-B. (1995). Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, 4650.CrossRefGoogle ScholarPubMed
Van der Hammen, T. (1974). The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1, 326.CrossRefGoogle Scholar
Van der Hammen, T., and Absy, M.L. (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 247261.CrossRefGoogle Scholar
Wilson, T.R.S., Thomson, J., Hydes, D.J., Colley, S., Culkin, F., and Sorensen, J. (1986). Oxidation fronts in pelagic sediments: Diagenetic formation of metal-rich layers. Science 232, 972975.CrossRefGoogle ScholarPubMed
Wirrmann, D., and Mourguiart, P. (1995). Late Quaternary spatio-temporal limnological variations in the altiplano of Bolivia and Peru. Quaternary Research 43, 344354.CrossRefGoogle Scholar