Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T15:43:02.538Z Has data issue: false hasContentIssue false

Pleistocene Deposits in Pierre Saint-Martin Cave, French Pyrenees

Published online by Cambridge University Press:  20 January 2017

Yves Quinif
Affiliation:
CERAK, Faculté Polytechnique de Mons, B-7000, Mons, Belgium
Richard Maire
Affiliation:
URA DYMSET du CNRS, Maison des Suds, Université de Bordeaux 3, F-33405, Talence cedex, France

Abstract

Pleistocene deposits in alpine Pierre Saint-Martin cave are preserved in an abandoned river gallery. The deposits, 300 m long and 25 m high, are composed of a lower unit of fallen blocks overlain by debris flows, a main unit of laminated clay, and a series of river terraces inset into these units. The lower and main units are each overlain by speleothems. The lower unit represents a cold period, probably isotope stage 10. Corroded speleothems above it have given U/Th ages greater than 300,000–330,000 yr B.P. The main unit, with carbonate-rich varves devoid of pollen, represents a glaciation that occurred before 225,000 yr B.P. and probably correlates with stage 8, even though such a glaciation has not been previously recognized in the Pyrenees. The river terraces, covered by many noncorroded speleothems, probably formed during stage 7 (U/Th ages between 194,000 and 211,000–225,000 yr B.P.). Subsequent sinking of an underground river protected the deposits from erosion.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambert, P., Guendon, J.L., Vaudour, J., Magnin, F., Roiron, P., Quinif, Y., Aguilar, J.P., Marinval, P., 1992. Paléoenvironnements au Pléistocène moyen dans la vallée du Tarn: La formation travertineuse de la Rouquette (Creissels, Aveyron). Geobios. 14 133139.Google Scholar
Ambert, P., Quinif, Y., Roiron, P., Arthuis, R., 1995. Les travertins de la vallée du Lez (Montpellier, Sud de la France). Datations230 234 . Comptes Rendus de l'Académie des Sciences de Paris. 321 667674.Google Scholar
Atkinson, T.C., Harmon, R.S., Smart, P.L., Waltham, A.M., 1978. Paleoclimatic and geomorphic implications of Th230 234 . Nature. 272 2428.Google Scholar
Audra, P., 1994. Karsts alpins. Genèse des grands réseaux souterrains. Karstologia Mémoires. 5.Google Scholar
Bastin, B., Quinif, Y., Dupuis, C., Gascoyne, M., 1988. La séquence sédimentaire de la Grotte de Bohon. Annales de la Société Géologique de Belgique. 111 5160.Google Scholar
Berger, A.L., 1980. A critical review of modeling the astronomy theory of paleoclimates and the future of our climate. Actes des journées d'études internationales “Soleil et climat,”. 325355.Google Scholar
Bernat, M., 1969. Utilisation des méthodes basées sur le déséquilibre radioactif dans la géologie du Quaternaire. Cahiers de l'ORSTOM. I 327.Google Scholar
Cantillana, R., Quinif, Y., Maire, R., Chemical Geology. 57 1986 137144.Google Scholar
Duplessy, J.C., Lalou, C., Delibrias, G., Nguyen, H.V., 1972. Datations et études isotopiques de stalagmites. Applications aux paléotempératures. Annales de Spéléologie. 27 455464.Google Scholar
Ford, D.C., Williams, P., 1989. Karst Geomorphology and Hydrology. Unwin Hyman, London. Google Scholar
Gascoyne, G., 1977. Uranium series dating of speleothems: Analytical procedure. Technical Memories. 77–5.Google Scholar
Gordon, D., Smart, P.L., Ford, D.C., Andrews, J.N., Atkinson, T.C., Rowe, P., Christopher, N.S.J., 1989. Dating of late Pleistocene interglacial and interstadial periods in the United Kingdom from speleothems growth frequency. Quaternary Research. 31 1426.Google Scholar
Harmon, R.S., Ford, D.C., Schwarcz, H.P., 1977. Interglacial chronology of the Rocky and Mackenzie Mountains based upon230 234 . Canadian Journal of Earth Science. 4 25432552.Google Scholar
Harmon, R.S., Schwarcz, H.P., Ford, D.C., 1978. Stable isotope geochemistry of speleothems and cave water from the Flint Ridge–Mammoth Cave System Kentucky: Implications for terrestrial climate change during the period 230,000 to 100,000 years B.P. Journal of Geology. 86 373384.Google Scholar
Ivanovitch, I., Latham, A.G., Ku, T.L., 1992. Uranium-series disequilibrium in geochronology. Uranium Series Disequilibrium—Applications to Environmental Problems. Clarendon, Oxford, p. 62–94.Google Scholar
Lauritzen, S-E., 1995. High resolution paleotemperature proxy record for the last interglaciation based on Norwegian speleothems. Quaternary Research. 43 114.Google Scholar
Li, W.X., Lundberg, J., Dickin, A.P., Ford, D.C., Schwarcz, H.P., Mcnutt, R., Williams, D., 1989. High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature. 339 534536.Google Scholar
Magnin, F., Guendon, F., Quinif, Y., Roiron, P., Thinon, M., 1990. Datations isotopiques et étude des paléoenvironnements de la formation à travertins de la Papeterie Vasino (Meyrargues, Bouches-du-Rhône, France). Mise en évidence de deux périodes de réchauffement durant le Riss. Comptes Rendus de l'Académie des Sciences de Paris. 310 12851292.Google Scholar
Maire, R., 1990. La haute montagne calcaire. Karstologia Mémoires. 3.Google Scholar
Maire, R., Quinif, Y., 1984. Un complexe sédimentaire karstique en milieu alpin: Les dépôts de la galerie Aranzadi (Gouffre de la Pierre Saint-Martin, Pyrénées Atlantiques). Comptes Rendus de l'Académie des Sciences de Paris. 298 183186.Google Scholar
Maire, R., Quinif, Y., 1988. Chronostratigraphie et évolution sédimentaire en milieu alpin dans la Galerie Aranzadi (Gouffre de la Pierre Saint-Martin, Pyrénées, France). Annales de la Société Géologique de Belgique. 111 6178.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackelton, N.J., 1987. Age dating and the orbital theory of the ice ages: Development of a high resolution 0 to 300,000-years chronostratigraphy. Quaternary Research. 27 129.Google Scholar
Passega, R., 1964. Grain size representation by C.M. patterns as a geological tool. Journal of Sedimentary Petrology. 34 4.Google Scholar
Pisias, N.G., Martinson, D.G., Moore, Jr.T.C., Shackleton, N.J., Prell, W., Hays, J., Boden, G., 1984. High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years. Marine Geology. 56 119136.Google Scholar
Quinif, Y., 1987. Concentrations anomales en uranium dans les stalagmites (Gouffre de la Pierre Saint-Martin, Pyrénées, France). Bulletin de la Société belge de Géologie. 96 121128.Google Scholar
Quinif, Y., 1990. La datation des spéléothèmes (U/Th) appliquée aux séquences sédimentaires souterraines pour une mise en évidence des ruptures paléoclimatiques. Karstologia Mémoires. 2 2332.Google Scholar
Quinif, Y., 1992. Datation uranium/thorium d'une séquence stalagmitique du Pléistocène supérieur du Languedoc (Le couloir blanc—Grotte de Clamouse). Comptes Rendus de l'Académie des Sciences de Paris. 314 10351042.Google Scholar
Quinif, Y., Bastin, B., 1994. Datation uranium/thorium et analyse pollinique d'une séquence stalagmitique du stade isotopique 5 (Galerie des Verviétois, Grotte de Han-sur-Lesse, Belgique). Comptes rendus de l'Académie des Ssiences de Paris. 318 211217.Google Scholar
Quinif, Y., Genty, D., Maire, R., 1994. Les spéléothèmes: Un outil performant pour les études paléoclimatiques. Bulletin de la Société Géologique de France. 165 603612.Google Scholar
Schroeder, J., Ford, D.C., 1983. Clastic sediments in Castleguard Cave, Columbia Icefield, Alberta, Canada. Artic and Alpine Research. 15 451461.Google Scholar
Shackleton, N.J., Opdyke, N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28238: Oxygen isotope temperatures and ice volumes on a 105 6 . Quaternary Research. 3 3955.Google Scholar
Tyler, B.C., Winograd, I.J., Landwehr, J.M., Riggs, A.C., 1994. 500,000-year stable carbon isotopic record from Devils Hole, Nevada. Science. 263 361365.Google Scholar
Winograd, I.J., Tyler, B.C., Landwehr, J.M., Riggs, A.C., Ludwig, K.R., Szabo, B.J., Koselar, P.T., Revesz, K.M., 1992. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science. 258 255260.Google Scholar
Winograd, I.J., Szabo, B.J., Tyler, B.C., Riggs, A.C., 1992. A 250,000-year climatic record from Great Basin vein calcite: Implications for Milankovitch theory. Science. 242 12751280.Google Scholar