Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T22:46:50.657Z Has data issue: false hasContentIssue false

Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania

Published online by Cambridge University Press:  20 January 2017

Doris Barboni*
Affiliation:
CEREGE (UMR6635 CNRS/Université Aix-Marseille), BP80, F-13545 Aix-en-Provence cedex 4, France
Gail M. Ashley
Affiliation:
Dept of Earth & Planetary Sciences, Rutgers University, Piscataway, NJ 08854-8066, USA
Manuel Dominguez-Rodrigo
Affiliation:
IDEA (Instituto de Evolución en África), Museo de los Orígenes, Plaza de San Andrés 2, 28005 Madrid, Spain Dept. of Prehistory, Complutense University of Madrid Ciudad Universitaria s/n, 28040 Madrid, Spain
Henry T. Bunn
Affiliation:
Dept of Anthropology, University of Wisconsin-Madison, 1180 Observatory Drive, Madison, WI 53706, USA
Audax Z.P. Mabulla
Affiliation:
Archaeology Unit, P.O. Box 35050, University of Dar es Salaam, Dar es Salaam, Tanzania
Enrique Baquedano
Affiliation:
IDEA (Instituto de Evolución en África), Museo de los Orígenes, Plaza de San Andrés 2, 28005 Madrid, Spain Museo Arqueológico Regional de Madrid, Plaza de las Bernardas, Alcalá de Henares, Madrid, Spain
*
*Corresponding author. CEREGE (UMR6635 CNRS/Université Aix-Marseille), BP80, F-13545 Aix-en-Provence cedex 4, France. Fax: +33 442 971 540. E-mail address:[email protected] (D. Barboni).

Abstract

The phytolith content of 10 samples collected immediately under Tuff IF (~ 1.785 Ma) at FLK N and other surrounding localities (~ 2 km²) provides a direct botanical evidence for woody vegetation in the eastern margin of Olduvai Gorge during uppermost Bed I time. Observation and counting of 143 phytolith types (5 to >150 μ) reveal dense but heterogeneous woody cover (~ 40–90%) of unidentified trees and/or shrubs and palms associated to the freshwater springs surrounding FLK N, and more open formation (presumably ~ 25–70% woody cover) in the southeast at localities VEK, HWK W and HWK E. The paleovegetation is best described as groundwater palm forest/woodland or bushland, which current analogue may be found near Lake Manyara in similar hydrogeological context (freshwater springs near saline/alkaline lake). Re-evaluating the published pollen data based on this analogy shows that 70% of the pollen signal at FLK N may be attributed to thicket-woodland, Acacia groundwater woodland, gallery and groundwater forests; while < 30% is attributed to swamp herbage and grasslands. Micro-botanical, isotopic, and taphonomical studies of faunal remains converge on the same conclusion that the area surrounding FLK N, which attracted both carnivores and hominins in the early Pleistocene, was densely wooded during uppermost Bed I time.

Type
Special Issue Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, R.M., Bamford, M.K., and Cabanes, D. Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples. Quaternary International 148, (2006). 7894.CrossRefGoogle Scholar
Albert, R.M., Bamford, M.K., and Cabanes, D. Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quaternary International 193, (2009). 4148.Google Scholar
Alexandre, A., Meunier, J.-D., Lézine, A.-M., Vincens, A., and Schwartz, D. Phytoliths indicators of grasslands dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136, (1997). 213219.CrossRefGoogle Scholar
Andrews, P., and Humphrey, L. African Miocene environments and the transition to early hominines. Bromage, T.G., and Schrenk, F. African Biogeography, Climate Change & Human Evolution. Human Evolution Series. (1999). 282300.Google Scholar
Ashley, G.M. Geologists probe hominid environments. GSA Today 10, (2000). 2429.Google Scholar
Ashley, G.M. Orbital rhythms, monsoons, and playa lake response, Olduvai Basin, equatorial East Africa (ca. 1.85–1.74 Ma). Geology 35, (2007). 10911094.Google Scholar
Ashley, G.M., and Hay, R.L. Sedimentation patterns in a Plio-Pleistocene volcaniclastic rift-margin basin, Olduvai Gorge, Tanzania. Sedimentation in Continental Rifts, SEPM Special Publication 73, (2002). 107122.Google Scholar
Ashley, G.M., Barboni, D., Dominguez-Rodrigo, M., Bunn, H.T., Mabulla, A.Z., Diez-Martin, F., Barba, R., and Baquedano, E. Paleoenvironmental and Paleoecological Reconstruction of a Freshwater Oasis in Savannah Grassland at FLK North, Olduvai Gorge. (2010). Tanzania, Quaternary Research.Google Scholar
Ball, T.B., Baird, G., Woolstenhulme, L., al Farsi, A., and Ghazanfar, S. Phytoliths Produced by the Vegetation of the Sub-tropical Coastal Region of Dhofar. (2002). Oman, CD Distributed by The Society for Phytolith Research.Google Scholar
Bamford, M.K. Early Pleistocene fossil wood from Olduvai Gorge, Tanzania. Quaternary International 129, (2005). 1522.Google Scholar
Bamford, M.K., Albert, R.M., and Cabanes, D. Plio-Pleistocene macroplant fossil remains and phytoliths from Lowermost Bed II in the eastern palaeolake margin of Olduvai Gorge, Tanzania. Quaternary International 148, (2006). 95112.CrossRefGoogle Scholar
Bamford, M.K., Stanistreet, I.G., Stollhofen, H., and Albert, R.M. Late Pliocene grassland from Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 257, (2008). 280293.Google Scholar
Barboni, D., and Bremond, L. Phytoliths of East African grasses: an assessment of their environmental and taxonomic significance based on floristic data. Review of Palaeobotany and Palynology 158, (2009). 2941.Google Scholar
Barboni, D., Bremond, L., and Bonnefille, R. Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 454470.CrossRefGoogle Scholar
Berggren, W.A., Kent, D.V., Swisher, C.C., and Aubry, M.-P. A revised Cenozoic geochronology and chronostratigraphy. Berggren, W.A., Kent, D.V., Aubry, M.-P., and Hardenbol, J. Geochronology, Time Scales, and Global Stratigraphic Correlation. (1996). 129212.Google Scholar
Blumenschine, R.J., and Masao, F.T. Living sites at Olduvai Gorge, Tanzania? Preliminary landscape archaeology results in the basal Bed II lake margin zone. Journal of Human Evolution 21, (1991). 451462.Google Scholar
Blumenschine, R.J., Peters, C.R., Masao, F.T., Clarke, R.J., Deino, A.L., Hay, R.L., Swisher, C.C., Stanistreet, I.G., Ashley, G.M., McHenry, L.J., Sikes, N.E., van der Merwe, N.J., Tactikos, J.C., Cushing, A.E., Deocampo, D.M., Njau, J.K., and Ebert, J.I. Late Pliocene Homo and hominid land use from western Olduvai Gorge, Tanzania. Science 299, (2003). 12171221.Google Scholar
Bonnefille, R. Palynological research at Olduvai Gorge. Lea, J.S., Link Powars, N., and Swanson, W. National Geographic Society Research Reports — 1976 Projects. On Research and Exploration Projects Supported by the National Geographic Society, for which an Initial Grant or Continuing Support was Provided in the Year 1976. (1984). National Geographic Society, Washington, DC. 227243.Google Scholar
Bonnefille, R., and Riollet, G. Palynologie, végétation et climats de Bed 1 et Bed 2 à Olduvai, Tanzanie. Proceedings of the Eighth Pan-African Congress of Prehistory and Quaternary Studies, Sept. 1977. (1980). TILLMIAP, NairobiNairobi.Google Scholar
Bonnefille, R., Lobreau, D., and Riollet, G. Fossil pollen of Ximenia (Olacaceae) in the Lower Pleistocene of Olduvai, Tanzania — paleological implications. Journal of Biogeography 9, (1982). 469486.Google Scholar
Bozarth, S.R. Classification of opal phytoliths formed in selected dicotyledons native to Great Plains. Rapp, G., and Mulholland, S.C. Phytolith Systematics. (1992). Plenum, New York and London. 305 Google Scholar
Bremond, L., Alexandre, A., Hély, C., and Guiot, J. A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest–savanna transect in southeastern Cameroon. Global and Planetary Change 45, (2005). 277293.Google Scholar
Bremond, L., Alexandre, A., Peyron, O., and Guiot, J. Grass water stress estimated from phytoliths in West Africa. Journal of Biogeography 32, (2005). 311327.CrossRefGoogle Scholar
Bremond, L., Alexandre, A., Wooller, M.J., Hely, C., Williamson, D., Schafer, P.A., Majule, A., and Guiot, J. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global and Planetary Change 61, (2008). 209224.Google Scholar
Bunn, H.T., and Kroll, E.M. Systematic butchery by Plio-Pleistocene hominids at Olduvai-Gorge. Tanzania Current Anthropology 27, (1986). 431452.Google Scholar
Bunn, H.T., Mabulla, A.Z.P., Dominguez-Rodrigo, M., Ashley, G.M., Barba, R., Diez-Martin, F., Remer, K., Yravedra, J., and Baquedano, E. Was FLK North levels 1–2 a classic “living floor” of Oldowan hominins or a taphonomically complex palimpsest dominated by large carnivore feeding behavior?. Quaternary Research (2010). Google Scholar
Carson, G.A. Silicification of fossils. Allison, P.A., and Briggs, D.E.G. Taphonomy; Releasing the Data Locked in the Fossil Record. Topics in Geobiology. (1991). Plenum Press, New York. 455499.Google Scholar
Cerling, T.E., and Hay, R.L. An isotopic study of paleosol carbonates from Olduvai Gorge. Quaternary Research 25, (1986). 6378.CrossRefGoogle Scholar
Deocampo, D.M., Cuadros, J., Wing-Dudek, T., Olives, J., and Amouric, M. Saline lake diagenesis as revealed by coupled mineralogy and geochemistry of multiple ultrafine clay phases: Pliocene Olduvai Gorge, Tanzania. American Journal of Science 309, (2009). 834868.Google Scholar
Diez-Martin, F., Sanchez Yustos, P., Dominguez-Rodrigo, M., Mabulla, A.Z.P., Bunn, H.T., Ashley, G.M., Barba, R., and Baquedano, E. New insights into hominin lithic activities at FLK North Bed I (Olduvai Gorge, Tanzania). Quaternary Research 74, (2010). 376387.Google Scholar
Dominguez-Rodrigo, M., Barba, R., and Egeland, C.P. Deconstructing Olduvai: a taphonomic study of the Bed I sites. Vertebrate Paleobiology and Paleoanthropology Series. (2007). Springer, AA Dordrecht, The Netherlands. pp. xvi+337 Google Scholar
Dominguez-Rodrigo, M., Mabulla, A.Z.P., Bunn, H.T., Diez-Martin, F., Baquedano, E., Barboni, D., Barba, R., Dominguez-Solera, S., Sanchez, P., Ashley, G.M., and Yravedra, J. Disentangling hominin and carnivore activities near a spring at FLK North (Olduvai Gorge, Tanzania). Quaternary Research 74, (2010). 363375.Google Scholar
Fernandez-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., and Humphrey, L. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution 34, (1998). 137172.Google Scholar
Gentry, A.W., and Gentry, A. Fossil bovidae (Mammalia) of Olduvai Gorge, Tanzania, part II. Bulletin of the British Museum (Natural History). Geology Series 30, (1978). 183.Google Scholar
Greenway, P.J., and Vesey-Fitzgerald, D.F. The vegetation of Lake Manyara National Park. Journal of Ecology 57, (1969). 127149.Google Scholar
Hay, R.L. Geology of the Olduvai Gorge. (1976). University of California Press, Berkeley.Google Scholar
Hay, R.L., and Kyser, T.K. Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pleistocene lake in northern Tanzania. Geological Society of America Bulletin 113, (2001). 15051521.Google Scholar
Herlocker, D.J., and Dirschl, H.J. Vegetation of the Ngorongoro Conservation Area, Tanzania. (1972). Number 19, 39 Google Scholar
Kappelman, J. Plio-Pleistocene Environments of Bed-I and Lower Bed-II, Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 48, (1984). 171196.Google Scholar
Leakey, M.G. Olduvai Gorge: Excavations in Beds I and II; 1960–1963. (1971). Cambridge University Press, Cambridge, UK.Google Scholar
Livingstone, D.A., and Clayton, W.D. An altitudinal cline in tropical African grass floras and its paleoecological significance. Quaternary Research 13, (1980). 392402.Google Scholar
Loth, P.E., and Prins, H.H.T. Spatial patterns of the landscape and vegetation of Lake Manyara National Park. ITC Journal 2, (1986). 115130.Google Scholar
Madella, M., Alexandre, A., and Ball, T. International Code for Phytolith Nomenclature 1.0. Annals of Botany 96, (2005). 253260.Google Scholar
Madella, M., Jones, M.K., Echlin, P., Powers-Jones, A., and Moore, M. Plant water availability and analytical microscopy of phytoliths: implications for ancient irrigation in arid zones. Quaternary International 193, (2009). 3240.Google Scholar
Mercader, J., Bennett, T., Esselmont, C., Simpson, S., and Walde, D. Phytoliths in woody plants from the miombo woodlands of Mozambique. Annals of Botany 104, (2009). 91113.Google Scholar
Okubo, A., and Levin, S.A. A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70, (1989). 329338.Google Scholar
Peters, C.R., and Blumenschine, R.J. Landscape perspectives on possible land use patterns for early hominids in the Olduvai Basin. Journal of Human Evolution 29, (1995). 321362.CrossRefGoogle Scholar
Piperno, D.P. Phytolith Analysis — An Archaeological and Geological Perspective. (1988). Academic Press / Harcourt Brace Jovanovich, New York, USA.Google Scholar
Piperno, D.R. (2006). Phytoliths. A comprehensive guide for archaeologists and paleoecologists. AltaMira Press (Rowman & Littlefield), Lanham, New York, Toronto, Oxford.Google Scholar
Piperno, D.R. Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quaternary International 193, (2009). 146159.Google Scholar
Plummer, T.W., and Bishop, L.C. Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution 27, (1994). 4775.CrossRefGoogle Scholar
Postek, M.T. The occurrence of silica in the leaves of Magnolia grandiflora L. Botanical Gazette 142, (1981). 124134.Google Scholar
Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, (1996). 185194.Google Scholar
Prychid, C.J., Rudall, P.J., and Gregory, M. Systematics and biology of silica bodies in monocotyledons. Botanical Review 69, (2004). 377440.Google Scholar
Rossouw, L. (2009). “The application of fossil grass-phytolith analysis in the reconstruction of late Cainozoic environments in the South African interior.".Unpublished PhD thesis, University of the Free State, .Google Scholar
Runge, F. The opal phytolith inventory of soils in central Africa — quantities, shapes, classification, and spectra. Review of Palaeobotany and Palynology 107, (1999). 2353.Google Scholar
Shipman, P., and Harris, J.W.K. Habitat preference and paleoecology of Australopithecus boisei in East Africa. Grine, F. Evolutionary History of the Robust Australopithecines. (1988). Aldine de Gruyter, New York. 343381.Google Scholar
Sikes, N.E., and Ashley, G.M. Stable isotopes of pedogenic carbonates as indicators of paleoecology in the Plio-Pleistocene (upper Bed I), western margin of the Olduvai Basin, Tanzania. Journal of Human Evolution 53, (2007). 574594.Google Scholar
Strömberg, C.A.E. The Origin and Spread of Grass-dominated Ecosystems during the Tertiary of North America and How It Relates to the Evolution of Hypsodonty in Equids. (2003). Unpublished PhD dissertation thesis, University of California.Google Scholar
Strömberg, C.A.E. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 207, (2004). 239275.Google Scholar
Tomlinson, P.B. Anatomy of the Monocotyledons. (1961). Oxford University Press, London.Google Scholar
Twiss, P.C., Suess, E., and Smith, R.M. Morphological classification of grass phytoliths. Procedure of Soil Science Society of America 33, (1969). 109115.Google Scholar
van der Merwe, N.J., Masao, F.T., and Bamford, M.K. Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania. South African Journal of Science 104, (2008). 153155.Google Scholar
Vincens, A., Lézine, A.M., Buchet, G., Lewden, D., and Le Thomas, A. African pollen database inventory of tree and shrub pollen types. Review of Palaeobotany and Palynology 145, (2007). 135141.Google Scholar
WoldeGabriel, G., Ambrose, S.H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., DeGusta, D., Hart, W.K., Murray, A.M., Renne, P.R., Jolly-Saad, M.C., Stewart, K.M., and White, T.D. The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus . Science 326, (2009). 65e165e5.Google Scholar
Supplementary material: PDF

Barboni et al. Supplementary Material

Appendices

Download Barboni et al. Supplementary Material(PDF)
PDF 29.3 KB
Supplementary material: PDF

Barboni et al. Supplementary Material

Appendices

Download Barboni et al. Supplementary Material(PDF)
PDF 10.6 KB