Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:25:22.240Z Has data issue: false hasContentIssue false

Passage of Tropical Storm Allison (2001) over southeast Texas recorded in δ18O values of Ostracoda

Published online by Cambridge University Press:  20 January 2017

James R. Lawrence*
Affiliation:
Department of Geosciences, Room 312 SR-1, University of Houston, Houston, TX 77204-5007, USA
Kiseong Hyeong
Affiliation:
Deep-Sea Resources Research Center, Korea Ocean Research and Development Institute, Ansan P.O. Box 29, Seoul, 425-600, Republic of Korea
Rosalie F. Maddocks
Affiliation:
Department of Geosciences, Room 312 SR-1, University of Houston, Houston, TX 77204-5007, USA
Kwang-Sik Lee
Affiliation:
Korea Basic Science Institute, 52 Eoeun-dong, Yusung-gu, Daejeon, 305-333, Republic of Korea
*
*Corresponding author. Fax: +1 713 748 7906. E-mail address:[email protected]

Abstract

Freshwater Ostracoda collected in ephemeral pond-waters derived from Tropical Storm Allison (2001, Texas) recorded the unusually low oxygen-isotope values of that storm. Therefore, the potential clearly exists, in locations where tropical cyclones make landfall, to obtain a long-term record of tropical cyclone activity from fossil ostracode calcite.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Curry, B.B., (1999). An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats.. Palaeogeography Palaeoclimatology Palaeoecology 148, 5163.Google Scholar
Delorme, L.D., (1989). Methods in Quaternary Ecology. No. 7, Freshwater Ostracoda.. Geosciences Canada 16, 8590.Google Scholar
Durazzi, J.T., (1977). Stable isotopes in the ostracod shell: a preliminary study.. Geochimica et Cosmochimica Acta 41, 11681170.CrossRefGoogle Scholar
Epstein, S., Mayeda, R.K., (1953). Variations in the O18 content of water from natural sources.. Geochimica et Cosmochimica Acta 4, 213224.Google Scholar
Ferguson, E., (1944). Studies of seasonal life history of three species of freshwater Ostracoda.. American Midland Naturalist 32, 713727.Google Scholar
Forester, R.M., Smith, A.J., Palmer, D.F., Curry, B.B., (2007). North American Non-Marine Ostracode Database “NANODe”.. web site http://www.kent.edu/nanode (2007).Google Scholar
Hoff, C.C., (1943). The description of a new ostracod of the genus Potamocypris from Grand Isle, Louisiana, and records of ostracods from Mississippi and Louisiana.. Occasional Papers of the Marine Laboratory 3, Louisiana State University, 111.Google Scholar
Holmes, J.A., (1996). Trace-element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction.. Journal of Paleolimnology 15, 223235.CrossRefGoogle Scholar
Holmes, J.A., Chivas, A.R., (2002). Ostracod shell chemistry — overview.. Holmes, J.A., Chivas, A.R. The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131, 185204.Google Scholar
Ito, E., (2002). Mg/Ca, Sr/Ca, δ 18O and δ 13C chemistry of Quaternary lacustrine ostracode shells from the North American continental interior.. Holmes, J.A., Chivas, A.R. The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131, 267278.Google Scholar
Keatings, K.W., Heaton, T.H.E., Holmes, J.A., (2002a). The effects of diagenesis on the trace element and stable isotope geochemistry of non-marine ostracod valves.. Journal of Paleolimnology 28, 245253.CrossRefGoogle Scholar
Keatings, K.W., Heaton, T.H.E., Holmes, J.A., (2002b). Carbon and oxygen isotope fractionation in non-marine ostracods: results from a ‘natural culture' culture’ environment.. Geochimica et Cosmochimica Acta 66, 17011711.CrossRefGoogle Scholar
Kesling, R.V., (1951). The Morphology of ostracod molt stages.. Ilinois Biological Moographs 21, 1324.Google Scholar
Keyser, D., Walter, R., (2004). Calcification in ostracodes.. Revista Española di Micropaleontología. 36, 111.Google Scholar
Koch, C.L., (1838). Deutschlands Crustaceen, Myriapoden und Arachniden. Ein Beitrag zur deutschen Fauna.. Heft 21: Species 12–24. Regensburg.Google Scholar
Lawrence, J.R., (1998). Isotope spikes from tropical cyclones in surface waters: opportunities in hydrology and paleoclimatology.. Chemical Geology 144, 153160.Google Scholar
Lawrence, J.R., Gedzelman, S.D., (1996). Low isotope ratios of tropical cyclone rains.. Geophysical Research Letters 23, 527530.Google Scholar
McCrea, J.M., (1950). The isotopic chemistry of carbonates and a paleotemperature scale.. Journal of Chemical Physics 18, 849857.Google Scholar
Mezquita, F., Tapia, G., Roca, J.R., (1999). Ecology and distribution of ostracods in a polluted Mediterranean river.. Palaeogeography Palaeoclimatology Palaeoecology 148, 87103.CrossRefGoogle Scholar
Müller, O.F., (1786). Zoologica Danicae Prodromus, seu animalium daniae et norvegiae indigenarum characteres, omina, et synonyma imprimis popularium.. 282 Havniae.Google Scholar
O'Neil, R.N., Mayeda, T.K., (1969). Oxygen isotope fractionation in divalent carbonates.. Journal of Chemical Physics 51, 55475558.Google Scholar
Ramdohr, F.A., (1808). Űber die Gattung Cypris Müll. und drei zu derselben gehőrige neue Arten.. Magazin der Gesellschaft Naturforschender Freunde zu Berlin für die neuesten Entdeckungen in der gesammten Naturkunde 1, 8593.Google Scholar
Rossi, V., Menozzi, P., (1990). The clonal ecology of Heterocypris incongruens (Ostracoda).. Oikos 57, 388398. (1990).CrossRefGoogle Scholar
Schreiber, E., (1922). Beiträge zur Kenntnis der Morphologie, Entwicklung und Lebensweise der Süsswasser-Ostracoden.. Zoologisches Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere 43, 485537.Google Scholar
Szczechura, J., (1971). Seasonal changes in a reared fresh-water species, Cyprinotus (Heterocypris) incongruens (Ostracoda) and their importance in the interpretation of variability in fossil ostracodes.. Oertli, H.J. Colloquium on the Paleoecology of Ostracodes. Bulletin du Centre de Recherches Pau-SNPA (Supplément) 5, 191205.Google Scholar
Turpen, J.B., Angell, R.W., (1971). Aspects of molting and calcification in the ostracod Heterocypris.. Biological Bulletin 140, 331338.CrossRefGoogle Scholar
U.S. National Weather Service (2001). U.S. National Weather Service records for Hobby Airport in Houston.. <http://www.srh.noaa.gov/hgx/climate/hou/2001/jun01hou.txt>..>Google Scholar
Von Grafenstein, U., Erlernkeuser, H., Trimborn, P., (1999). Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies.. Palaeogeography Palaeoclimatology Palaeoecology, 148, 133152.Google Scholar
Xia, J., Ito, E., Engstrom, D.R., (1997). Geochemistry of ostracode calcite: part 1. An experimental determination of oxygen isotope fractionation.. Geochimica et Cosmochimica Acta 61, 377382.CrossRefGoogle Scholar